| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n |  | 
						
							| 2 |  | ttgitvval.i |  | 
						
							| 3 |  | ttgitvval.b |  | 
						
							| 4 |  | ttgitvval.m |  | 
						
							| 5 |  | ttgitvval.s |  | 
						
							| 6 |  | ttgelitv.x |  | 
						
							| 7 |  | ttgelitv.y |  | 
						
							| 8 |  | ttgbtwnid.r |  | 
						
							| 9 |  | ttgbtwnid.2 |  | 
						
							| 10 |  | ttgbtwnid.1 |  | 
						
							| 11 |  | ttgbtwnid.y |  | 
						
							| 12 |  | simpll |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 |  | clmlmod |  | 
						
							| 15 | 10 14 | syl |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 3 16 4 | lmodsubid |  | 
						
							| 18 | 15 6 17 | syl2anc |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 | 15 | ad2antrr |  | 
						
							| 22 | 9 | ad2antrr |  | 
						
							| 23 |  | simplr |  | 
						
							| 24 | 22 23 | sseldd |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 25 5 8 16 | lmodvs0 |  | 
						
							| 27 | 21 24 26 | syl2anc |  | 
						
							| 28 | 13 20 27 | 3eqtrd |  | 
						
							| 29 | 3 16 4 | lmodsubeq0 |  | 
						
							| 30 | 15 7 6 29 | syl3anc |  | 
						
							| 31 | 30 | biimpa |  | 
						
							| 32 | 12 28 31 | syl2anc |  | 
						
							| 33 | 32 | eqcomd |  | 
						
							| 34 | 1 2 3 4 5 6 6 10 7 | ttgelitv |  | 
						
							| 35 | 11 34 | mpbid |  | 
						
							| 36 | 33 35 | r19.29a |  |