Step |
Hyp |
Ref |
Expression |
1 |
|
ttgval.n |
|- G = ( toTG ` H ) |
2 |
|
ttgitvval.i |
|- I = ( Itv ` G ) |
3 |
|
ttgitvval.b |
|- P = ( Base ` H ) |
4 |
|
ttgitvval.m |
|- .- = ( -g ` H ) |
5 |
|
ttgitvval.s |
|- .x. = ( .s ` H ) |
6 |
|
ttgelitv.x |
|- ( ph -> X e. P ) |
7 |
|
ttgelitv.y |
|- ( ph -> Y e. P ) |
8 |
|
ttgbtwnid.r |
|- R = ( Base ` ( Scalar ` H ) ) |
9 |
|
ttgbtwnid.2 |
|- ( ph -> ( 0 [,] 1 ) C_ R ) |
10 |
|
ttgbtwnid.1 |
|- ( ph -> H e. CMod ) |
11 |
|
ttgbtwnid.y |
|- ( ph -> Y e. ( X I X ) ) |
12 |
|
simpll |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ph ) |
13 |
|
simpr |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( Y .- X ) = ( k .x. ( X .- X ) ) ) |
14 |
|
clmlmod |
|- ( H e. CMod -> H e. LMod ) |
15 |
10 14
|
syl |
|- ( ph -> H e. LMod ) |
16 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
17 |
3 16 4
|
lmodsubid |
|- ( ( H e. LMod /\ X e. P ) -> ( X .- X ) = ( 0g ` H ) ) |
18 |
15 6 17
|
syl2anc |
|- ( ph -> ( X .- X ) = ( 0g ` H ) ) |
19 |
18
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( X .- X ) = ( 0g ` H ) ) |
20 |
19
|
oveq2d |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( k .x. ( X .- X ) ) = ( k .x. ( 0g ` H ) ) ) |
21 |
15
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> H e. LMod ) |
22 |
9
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( 0 [,] 1 ) C_ R ) |
23 |
|
simplr |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> k e. ( 0 [,] 1 ) ) |
24 |
22 23
|
sseldd |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> k e. R ) |
25 |
|
eqid |
|- ( Scalar ` H ) = ( Scalar ` H ) |
26 |
25 5 8 16
|
lmodvs0 |
|- ( ( H e. LMod /\ k e. R ) -> ( k .x. ( 0g ` H ) ) = ( 0g ` H ) ) |
27 |
21 24 26
|
syl2anc |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( k .x. ( 0g ` H ) ) = ( 0g ` H ) ) |
28 |
13 20 27
|
3eqtrd |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( Y .- X ) = ( 0g ` H ) ) |
29 |
3 16 4
|
lmodsubeq0 |
|- ( ( H e. LMod /\ Y e. P /\ X e. P ) -> ( ( Y .- X ) = ( 0g ` H ) <-> Y = X ) ) |
30 |
15 7 6 29
|
syl3anc |
|- ( ph -> ( ( Y .- X ) = ( 0g ` H ) <-> Y = X ) ) |
31 |
30
|
biimpa |
|- ( ( ph /\ ( Y .- X ) = ( 0g ` H ) ) -> Y = X ) |
32 |
12 28 31
|
syl2anc |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> Y = X ) |
33 |
32
|
eqcomd |
|- ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> X = Y ) |
34 |
1 2 3 4 5 6 6 10 7
|
ttgelitv |
|- ( ph -> ( Y e. ( X I X ) <-> E. k e. ( 0 [,] 1 ) ( Y .- X ) = ( k .x. ( X .- X ) ) ) ) |
35 |
11 34
|
mpbid |
|- ( ph -> E. k e. ( 0 [,] 1 ) ( Y .- X ) = ( k .x. ( X .- X ) ) ) |
36 |
33 35
|
r19.29a |
|- ( ph -> X = Y ) |