| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n |  |-  G = ( toTG ` H ) | 
						
							| 2 |  | ttgitvval.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | ttgitvval.b |  |-  P = ( Base ` H ) | 
						
							| 4 |  | ttgitvval.m |  |-  .- = ( -g ` H ) | 
						
							| 5 |  | ttgitvval.s |  |-  .x. = ( .s ` H ) | 
						
							| 6 |  | ttgelitv.x |  |-  ( ph -> X e. P ) | 
						
							| 7 |  | ttgelitv.y |  |-  ( ph -> Y e. P ) | 
						
							| 8 |  | ttgbtwnid.r |  |-  R = ( Base ` ( Scalar ` H ) ) | 
						
							| 9 |  | ttgbtwnid.2 |  |-  ( ph -> ( 0 [,] 1 ) C_ R ) | 
						
							| 10 |  | ttgbtwnid.1 |  |-  ( ph -> H e. CMod ) | 
						
							| 11 |  | ttgbtwnid.y |  |-  ( ph -> Y e. ( X I X ) ) | 
						
							| 12 |  | simpll |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ph ) | 
						
							| 13 |  | simpr |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( Y .- X ) = ( k .x. ( X .- X ) ) ) | 
						
							| 14 |  | clmlmod |  |-  ( H e. CMod -> H e. LMod ) | 
						
							| 15 | 10 14 | syl |  |-  ( ph -> H e. LMod ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 17 | 3 16 4 | lmodsubid |  |-  ( ( H e. LMod /\ X e. P ) -> ( X .- X ) = ( 0g ` H ) ) | 
						
							| 18 | 15 6 17 | syl2anc |  |-  ( ph -> ( X .- X ) = ( 0g ` H ) ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( X .- X ) = ( 0g ` H ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( k .x. ( X .- X ) ) = ( k .x. ( 0g ` H ) ) ) | 
						
							| 21 | 15 | ad2antrr |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> H e. LMod ) | 
						
							| 22 | 9 | ad2antrr |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( 0 [,] 1 ) C_ R ) | 
						
							| 23 |  | simplr |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> k e. ( 0 [,] 1 ) ) | 
						
							| 24 | 22 23 | sseldd |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> k e. R ) | 
						
							| 25 |  | eqid |  |-  ( Scalar ` H ) = ( Scalar ` H ) | 
						
							| 26 | 25 5 8 16 | lmodvs0 |  |-  ( ( H e. LMod /\ k e. R ) -> ( k .x. ( 0g ` H ) ) = ( 0g ` H ) ) | 
						
							| 27 | 21 24 26 | syl2anc |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( k .x. ( 0g ` H ) ) = ( 0g ` H ) ) | 
						
							| 28 | 13 20 27 | 3eqtrd |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> ( Y .- X ) = ( 0g ` H ) ) | 
						
							| 29 | 3 16 4 | lmodsubeq0 |  |-  ( ( H e. LMod /\ Y e. P /\ X e. P ) -> ( ( Y .- X ) = ( 0g ` H ) <-> Y = X ) ) | 
						
							| 30 | 15 7 6 29 | syl3anc |  |-  ( ph -> ( ( Y .- X ) = ( 0g ` H ) <-> Y = X ) ) | 
						
							| 31 | 30 | biimpa |  |-  ( ( ph /\ ( Y .- X ) = ( 0g ` H ) ) -> Y = X ) | 
						
							| 32 | 12 28 31 | syl2anc |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> Y = X ) | 
						
							| 33 | 32 | eqcomd |  |-  ( ( ( ph /\ k e. ( 0 [,] 1 ) ) /\ ( Y .- X ) = ( k .x. ( X .- X ) ) ) -> X = Y ) | 
						
							| 34 | 1 2 3 4 5 6 6 10 7 | ttgelitv |  |-  ( ph -> ( Y e. ( X I X ) <-> E. k e. ( 0 [,] 1 ) ( Y .- X ) = ( k .x. ( X .- X ) ) ) ) | 
						
							| 35 | 11 34 | mpbid |  |-  ( ph -> E. k e. ( 0 [,] 1 ) ( Y .- X ) = ( k .x. ( X .- X ) ) ) | 
						
							| 36 | 33 35 | r19.29a |  |-  ( ph -> X = Y ) |