| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ttgval.n |
|- G = ( toTG ` H ) |
| 2 |
|
ttgitvval.i |
|- I = ( Itv ` G ) |
| 3 |
|
ttgitvval.b |
|- P = ( Base ` H ) |
| 4 |
|
ttgitvval.m |
|- .- = ( -g ` H ) |
| 5 |
|
ttgitvval.s |
|- .x. = ( .s ` H ) |
| 6 |
|
ttgelitv.x |
|- ( ph -> X e. P ) |
| 7 |
|
ttgelitv.y |
|- ( ph -> Y e. P ) |
| 8 |
|
ttgbtwnid.r |
|- R = ( Base ` ( Scalar ` H ) ) |
| 9 |
|
ttgbtwnid.2 |
|- ( ph -> ( 0 [,] 1 ) C_ R ) |
| 10 |
|
ttgitvval.p |
|- .+ = ( +g ` H ) |
| 11 |
|
ttgcontlem1.h |
|- ( ph -> H e. CVec ) |
| 12 |
|
ttgcontlem1.a |
|- ( ph -> A e. P ) |
| 13 |
|
ttgcontlem1.n |
|- ( ph -> N e. P ) |
| 14 |
|
ttgcontlem1.o |
|- ( ph -> M =/= 0 ) |
| 15 |
|
ttgcontlem1.p |
|- ( ph -> K =/= 0 ) |
| 16 |
|
ttgcontlem1.q |
|- ( ph -> K =/= 1 ) |
| 17 |
|
ttgcontlem1.r |
|- ( ph -> L =/= M ) |
| 18 |
|
ttgcontlem1.s |
|- ( ph -> L <_ ( M / K ) ) |
| 19 |
|
ttgcontlem1.l |
|- ( ph -> L e. ( 0 [,] 1 ) ) |
| 20 |
|
ttgcontlem1.k |
|- ( ph -> K e. ( 0 [,] 1 ) ) |
| 21 |
|
ttgcontlem1.m |
|- ( ph -> M e. ( 0 [,] L ) ) |
| 22 |
|
ttgcontlem1.y |
|- ( ph -> ( X .- A ) = ( K .x. ( Y .- A ) ) ) |
| 23 |
|
ttgcontlem1.x |
|- ( ph -> ( X .- A ) = ( M .x. ( N .- A ) ) ) |
| 24 |
|
ttgcontlem1.b |
|- ( ph -> B = ( A .+ ( L .x. ( N .- A ) ) ) ) |
| 25 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 26 |
25 19
|
sselid |
|- ( ph -> L e. RR ) |
| 27 |
25 20
|
sselid |
|- ( ph -> K e. RR ) |
| 28 |
26 27
|
remulcld |
|- ( ph -> ( L x. K ) e. RR ) |
| 29 |
|
0re |
|- 0 e. RR |
| 30 |
|
iccssre |
|- ( ( 0 e. RR /\ L e. RR ) -> ( 0 [,] L ) C_ RR ) |
| 31 |
29 26 30
|
sylancr |
|- ( ph -> ( 0 [,] L ) C_ RR ) |
| 32 |
31 21
|
sseldd |
|- ( ph -> M e. RR ) |
| 33 |
32 27
|
remulcld |
|- ( ph -> ( M x. K ) e. RR ) |
| 34 |
28 33
|
resubcld |
|- ( ph -> ( ( L x. K ) - ( M x. K ) ) e. RR ) |
| 35 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 36 |
32 35
|
remulcld |
|- ( ph -> ( M x. 1 ) e. RR ) |
| 37 |
36 33
|
resubcld |
|- ( ph -> ( ( M x. 1 ) - ( M x. K ) ) e. RR ) |
| 38 |
32
|
recnd |
|- ( ph -> M e. CC ) |
| 39 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 40 |
27
|
recnd |
|- ( ph -> K e. CC ) |
| 41 |
38 39 40
|
subdid |
|- ( ph -> ( M x. ( 1 - K ) ) = ( ( M x. 1 ) - ( M x. K ) ) ) |
| 42 |
39 40
|
subcld |
|- ( ph -> ( 1 - K ) e. CC ) |
| 43 |
16
|
necomd |
|- ( ph -> 1 =/= K ) |
| 44 |
39 40 43
|
subne0d |
|- ( ph -> ( 1 - K ) =/= 0 ) |
| 45 |
38 42 14 44
|
mulne0d |
|- ( ph -> ( M x. ( 1 - K ) ) =/= 0 ) |
| 46 |
41 45
|
eqnetrrd |
|- ( ph -> ( ( M x. 1 ) - ( M x. K ) ) =/= 0 ) |
| 47 |
34 37 46
|
redivcld |
|- ( ph -> ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) e. RR ) |
| 48 |
|
0xr |
|- 0 e. RR* |
| 49 |
26
|
rexrd |
|- ( ph -> L e. RR* ) |
| 50 |
|
iccgelb |
|- ( ( 0 e. RR* /\ L e. RR* /\ M e. ( 0 [,] L ) ) -> 0 <_ M ) |
| 51 |
48 49 21 50
|
mp3an2i |
|- ( ph -> 0 <_ M ) |
| 52 |
32 51 14
|
ne0gt0d |
|- ( ph -> 0 < M ) |
| 53 |
32 52
|
elrpd |
|- ( ph -> M e. RR+ ) |
| 54 |
35
|
rexrd |
|- ( ph -> 1 e. RR* ) |
| 55 |
|
iccleub |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ K e. ( 0 [,] 1 ) ) -> K <_ 1 ) |
| 56 |
48 54 20 55
|
mp3an2i |
|- ( ph -> K <_ 1 ) |
| 57 |
27 35 56 43
|
leneltd |
|- ( ph -> K < 1 ) |
| 58 |
|
difrp |
|- ( ( K e. RR /\ 1 e. RR ) -> ( K < 1 <-> ( 1 - K ) e. RR+ ) ) |
| 59 |
27 35 58
|
syl2anc |
|- ( ph -> ( K < 1 <-> ( 1 - K ) e. RR+ ) ) |
| 60 |
57 59
|
mpbid |
|- ( ph -> ( 1 - K ) e. RR+ ) |
| 61 |
53 60
|
rpmulcld |
|- ( ph -> ( M x. ( 1 - K ) ) e. RR+ ) |
| 62 |
41 61
|
eqeltrrd |
|- ( ph -> ( ( M x. 1 ) - ( M x. K ) ) e. RR+ ) |
| 63 |
26 32
|
resubcld |
|- ( ph -> ( L - M ) e. RR ) |
| 64 |
|
iccleub |
|- ( ( 0 e. RR* /\ L e. RR* /\ M e. ( 0 [,] L ) ) -> M <_ L ) |
| 65 |
48 49 21 64
|
mp3an2i |
|- ( ph -> M <_ L ) |
| 66 |
26 32
|
subge0d |
|- ( ph -> ( 0 <_ ( L - M ) <-> M <_ L ) ) |
| 67 |
65 66
|
mpbird |
|- ( ph -> 0 <_ ( L - M ) ) |
| 68 |
|
iccgelb |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ K e. ( 0 [,] 1 ) ) -> 0 <_ K ) |
| 69 |
48 54 20 68
|
mp3an2i |
|- ( ph -> 0 <_ K ) |
| 70 |
63 27 67 69
|
mulge0d |
|- ( ph -> 0 <_ ( ( L - M ) x. K ) ) |
| 71 |
26
|
recnd |
|- ( ph -> L e. CC ) |
| 72 |
71 38 40
|
subdird |
|- ( ph -> ( ( L - M ) x. K ) = ( ( L x. K ) - ( M x. K ) ) ) |
| 73 |
70 72
|
breqtrd |
|- ( ph -> 0 <_ ( ( L x. K ) - ( M x. K ) ) ) |
| 74 |
34 62 73
|
divge0d |
|- ( ph -> 0 <_ ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) ) |
| 75 |
27 69 15
|
ne0gt0d |
|- ( ph -> 0 < K ) |
| 76 |
27 75
|
elrpd |
|- ( ph -> K e. RR+ ) |
| 77 |
26 32 76
|
lemuldivd |
|- ( ph -> ( ( L x. K ) <_ M <-> L <_ ( M / K ) ) ) |
| 78 |
18 77
|
mpbird |
|- ( ph -> ( L x. K ) <_ M ) |
| 79 |
38
|
mulridd |
|- ( ph -> ( M x. 1 ) = M ) |
| 80 |
78 79
|
breqtrrd |
|- ( ph -> ( L x. K ) <_ ( M x. 1 ) ) |
| 81 |
28 36 33 80
|
lesub1dd |
|- ( ph -> ( ( L x. K ) - ( M x. K ) ) <_ ( ( M x. 1 ) - ( M x. K ) ) ) |
| 82 |
38 39
|
mulcld |
|- ( ph -> ( M x. 1 ) e. CC ) |
| 83 |
38 40
|
mulcld |
|- ( ph -> ( M x. K ) e. CC ) |
| 84 |
82 83
|
subcld |
|- ( ph -> ( ( M x. 1 ) - ( M x. K ) ) e. CC ) |
| 85 |
84
|
mulridd |
|- ( ph -> ( ( ( M x. 1 ) - ( M x. K ) ) x. 1 ) = ( ( M x. 1 ) - ( M x. K ) ) ) |
| 86 |
81 85
|
breqtrrd |
|- ( ph -> ( ( L x. K ) - ( M x. K ) ) <_ ( ( ( M x. 1 ) - ( M x. K ) ) x. 1 ) ) |
| 87 |
34 35 62
|
ledivmuld |
|- ( ph -> ( ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) <_ 1 <-> ( ( L x. K ) - ( M x. K ) ) <_ ( ( ( M x. 1 ) - ( M x. K ) ) x. 1 ) ) ) |
| 88 |
86 87
|
mpbird |
|- ( ph -> ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) <_ 1 ) |
| 89 |
|
elicc01 |
|- ( ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) e. ( 0 [,] 1 ) <-> ( ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) e. RR /\ 0 <_ ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) /\ ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) <_ 1 ) ) |
| 90 |
47 74 88 89
|
syl3anbrc |
|- ( ph -> ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) e. ( 0 [,] 1 ) ) |
| 91 |
11
|
cvsclm |
|- ( ph -> H e. CMod ) |
| 92 |
9 19
|
sseldd |
|- ( ph -> L e. R ) |
| 93 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 94 |
|
iccss2 |
|- ( ( 0 e. ( 0 [,] 1 ) /\ L e. ( 0 [,] 1 ) ) -> ( 0 [,] L ) C_ ( 0 [,] 1 ) ) |
| 95 |
93 19 94
|
sylancr |
|- ( ph -> ( 0 [,] L ) C_ ( 0 [,] 1 ) ) |
| 96 |
95 9
|
sstrd |
|- ( ph -> ( 0 [,] L ) C_ R ) |
| 97 |
96 21
|
sseldd |
|- ( ph -> M e. R ) |
| 98 |
|
eqid |
|- ( Scalar ` H ) = ( Scalar ` H ) |
| 99 |
98 8
|
clmsubcl |
|- ( ( H e. CMod /\ L e. R /\ M e. R ) -> ( L - M ) e. R ) |
| 100 |
91 92 97 99
|
syl3anc |
|- ( ph -> ( L - M ) e. R ) |
| 101 |
98 8
|
cvsdivcl |
|- ( ( H e. CVec /\ ( ( L - M ) e. R /\ M e. R /\ M =/= 0 ) ) -> ( ( L - M ) / M ) e. R ) |
| 102 |
11 100 97 14 101
|
syl13anc |
|- ( ph -> ( ( L - M ) / M ) e. R ) |
| 103 |
9 20
|
sseldd |
|- ( ph -> K e. R ) |
| 104 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 105 |
104
|
a1i |
|- ( ph -> 1 e. ( 0 [,] 1 ) ) |
| 106 |
9 105
|
sseldd |
|- ( ph -> 1 e. R ) |
| 107 |
98 8
|
clmsubcl |
|- ( ( H e. CMod /\ 1 e. R /\ K e. R ) -> ( 1 - K ) e. R ) |
| 108 |
91 106 103 107
|
syl3anc |
|- ( ph -> ( 1 - K ) e. R ) |
| 109 |
98 8
|
cvsdivcl |
|- ( ( H e. CVec /\ ( K e. R /\ ( 1 - K ) e. R /\ ( 1 - K ) =/= 0 ) ) -> ( K / ( 1 - K ) ) e. R ) |
| 110 |
11 103 108 44 109
|
syl13anc |
|- ( ph -> ( K / ( 1 - K ) ) e. R ) |
| 111 |
|
clmgrp |
|- ( H e. CMod -> H e. Grp ) |
| 112 |
91 111
|
syl |
|- ( ph -> H e. Grp ) |
| 113 |
3 4
|
grpsubcl |
|- ( ( H e. Grp /\ Y e. P /\ X e. P ) -> ( Y .- X ) e. P ) |
| 114 |
112 7 6 113
|
syl3anc |
|- ( ph -> ( Y .- X ) e. P ) |
| 115 |
3 98 5 8
|
clmvsass |
|- ( ( H e. CMod /\ ( ( ( L - M ) / M ) e. R /\ ( K / ( 1 - K ) ) e. R /\ ( Y .- X ) e. P ) ) -> ( ( ( ( L - M ) / M ) x. ( K / ( 1 - K ) ) ) .x. ( Y .- X ) ) = ( ( ( L - M ) / M ) .x. ( ( K / ( 1 - K ) ) .x. ( Y .- X ) ) ) ) |
| 116 |
91 102 110 114 115
|
syl13anc |
|- ( ph -> ( ( ( ( L - M ) / M ) x. ( K / ( 1 - K ) ) ) .x. ( Y .- X ) ) = ( ( ( L - M ) / M ) .x. ( ( K / ( 1 - K ) ) .x. ( Y .- X ) ) ) ) |
| 117 |
63
|
recnd |
|- ( ph -> ( L - M ) e. CC ) |
| 118 |
117 38 40 42 14 44
|
divmuldivd |
|- ( ph -> ( ( ( L - M ) / M ) x. ( K / ( 1 - K ) ) ) = ( ( ( L - M ) x. K ) / ( M x. ( 1 - K ) ) ) ) |
| 119 |
72 41
|
oveq12d |
|- ( ph -> ( ( ( L - M ) x. K ) / ( M x. ( 1 - K ) ) ) = ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) ) |
| 120 |
118 119
|
eqtrd |
|- ( ph -> ( ( ( L - M ) / M ) x. ( K / ( 1 - K ) ) ) = ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) ) |
| 121 |
120
|
oveq1d |
|- ( ph -> ( ( ( ( L - M ) / M ) x. ( K / ( 1 - K ) ) ) .x. ( Y .- X ) ) = ( ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) .x. ( Y .- X ) ) ) |
| 122 |
3 4
|
grpsubcl |
|- ( ( H e. Grp /\ X e. P /\ A e. P ) -> ( X .- A ) e. P ) |
| 123 |
112 6 12 122
|
syl3anc |
|- ( ph -> ( X .- A ) e. P ) |
| 124 |
22
|
oveq2d |
|- ( ph -> ( ( 1 - K ) .x. ( X .- A ) ) = ( ( 1 - K ) .x. ( K .x. ( Y .- A ) ) ) ) |
| 125 |
40 42
|
mulcomd |
|- ( ph -> ( K x. ( 1 - K ) ) = ( ( 1 - K ) x. K ) ) |
| 126 |
125
|
oveq1d |
|- ( ph -> ( ( K x. ( 1 - K ) ) .x. ( Y .- A ) ) = ( ( ( 1 - K ) x. K ) .x. ( Y .- A ) ) ) |
| 127 |
3 4
|
grpsubcl |
|- ( ( H e. Grp /\ Y e. P /\ A e. P ) -> ( Y .- A ) e. P ) |
| 128 |
112 7 12 127
|
syl3anc |
|- ( ph -> ( Y .- A ) e. P ) |
| 129 |
3 98 5 8
|
clmvsass |
|- ( ( H e. CMod /\ ( K e. R /\ ( 1 - K ) e. R /\ ( Y .- A ) e. P ) ) -> ( ( K x. ( 1 - K ) ) .x. ( Y .- A ) ) = ( K .x. ( ( 1 - K ) .x. ( Y .- A ) ) ) ) |
| 130 |
91 103 108 128 129
|
syl13anc |
|- ( ph -> ( ( K x. ( 1 - K ) ) .x. ( Y .- A ) ) = ( K .x. ( ( 1 - K ) .x. ( Y .- A ) ) ) ) |
| 131 |
3 98 5 8
|
clmvsass |
|- ( ( H e. CMod /\ ( ( 1 - K ) e. R /\ K e. R /\ ( Y .- A ) e. P ) ) -> ( ( ( 1 - K ) x. K ) .x. ( Y .- A ) ) = ( ( 1 - K ) .x. ( K .x. ( Y .- A ) ) ) ) |
| 132 |
91 108 103 128 131
|
syl13anc |
|- ( ph -> ( ( ( 1 - K ) x. K ) .x. ( Y .- A ) ) = ( ( 1 - K ) .x. ( K .x. ( Y .- A ) ) ) ) |
| 133 |
126 130 132
|
3eqtr3d |
|- ( ph -> ( K .x. ( ( 1 - K ) .x. ( Y .- A ) ) ) = ( ( 1 - K ) .x. ( K .x. ( Y .- A ) ) ) ) |
| 134 |
|
eqid |
|- ( -g ` ( Scalar ` H ) ) = ( -g ` ( Scalar ` H ) ) |
| 135 |
|
clmlmod |
|- ( H e. CMod -> H e. LMod ) |
| 136 |
91 135
|
syl |
|- ( ph -> H e. LMod ) |
| 137 |
3 5 98 8 4 134 136 106 103 128
|
lmodsubdir |
|- ( ph -> ( ( 1 ( -g ` ( Scalar ` H ) ) K ) .x. ( Y .- A ) ) = ( ( 1 .x. ( Y .- A ) ) .- ( K .x. ( Y .- A ) ) ) ) |
| 138 |
98 8
|
clmsub |
|- ( ( H e. CMod /\ 1 e. R /\ K e. R ) -> ( 1 - K ) = ( 1 ( -g ` ( Scalar ` H ) ) K ) ) |
| 139 |
91 106 103 138
|
syl3anc |
|- ( ph -> ( 1 - K ) = ( 1 ( -g ` ( Scalar ` H ) ) K ) ) |
| 140 |
139
|
oveq1d |
|- ( ph -> ( ( 1 - K ) .x. ( Y .- A ) ) = ( ( 1 ( -g ` ( Scalar ` H ) ) K ) .x. ( Y .- A ) ) ) |
| 141 |
3 5
|
clmvs1 |
|- ( ( H e. CMod /\ ( Y .- A ) e. P ) -> ( 1 .x. ( Y .- A ) ) = ( Y .- A ) ) |
| 142 |
91 128 141
|
syl2anc |
|- ( ph -> ( 1 .x. ( Y .- A ) ) = ( Y .- A ) ) |
| 143 |
142
|
eqcomd |
|- ( ph -> ( Y .- A ) = ( 1 .x. ( Y .- A ) ) ) |
| 144 |
143 22
|
oveq12d |
|- ( ph -> ( ( Y .- A ) .- ( X .- A ) ) = ( ( 1 .x. ( Y .- A ) ) .- ( K .x. ( Y .- A ) ) ) ) |
| 145 |
137 140 144
|
3eqtr4d |
|- ( ph -> ( ( 1 - K ) .x. ( Y .- A ) ) = ( ( Y .- A ) .- ( X .- A ) ) ) |
| 146 |
3 4
|
grpnnncan2 |
|- ( ( H e. Grp /\ ( Y e. P /\ X e. P /\ A e. P ) ) -> ( ( Y .- A ) .- ( X .- A ) ) = ( Y .- X ) ) |
| 147 |
112 7 6 12 146
|
syl13anc |
|- ( ph -> ( ( Y .- A ) .- ( X .- A ) ) = ( Y .- X ) ) |
| 148 |
145 147
|
eqtrd |
|- ( ph -> ( ( 1 - K ) .x. ( Y .- A ) ) = ( Y .- X ) ) |
| 149 |
148
|
oveq2d |
|- ( ph -> ( K .x. ( ( 1 - K ) .x. ( Y .- A ) ) ) = ( K .x. ( Y .- X ) ) ) |
| 150 |
124 133 149
|
3eqtr2rd |
|- ( ph -> ( K .x. ( Y .- X ) ) = ( ( 1 - K ) .x. ( X .- A ) ) ) |
| 151 |
3 5 98 8 11 103 108 114 123 15 150
|
cvsmuleqdivd |
|- ( ph -> ( Y .- X ) = ( ( ( 1 - K ) / K ) .x. ( X .- A ) ) ) |
| 152 |
3 5 98 8 11 108 103 114 123 44 15 151
|
cvsdiveqd |
|- ( ph -> ( ( K / ( 1 - K ) ) .x. ( Y .- X ) ) = ( X .- A ) ) |
| 153 |
152 123
|
eqeltrd |
|- ( ph -> ( ( K / ( 1 - K ) ) .x. ( Y .- X ) ) e. P ) |
| 154 |
3 4
|
grpsubcl |
|- ( ( H e. Grp /\ N e. P /\ A e. P ) -> ( N .- A ) e. P ) |
| 155 |
112 13 12 154
|
syl3anc |
|- ( ph -> ( N .- A ) e. P ) |
| 156 |
3 98 5 8
|
lmodvscl |
|- ( ( H e. LMod /\ L e. R /\ ( N .- A ) e. P ) -> ( L .x. ( N .- A ) ) e. P ) |
| 157 |
136 92 155 156
|
syl3anc |
|- ( ph -> ( L .x. ( N .- A ) ) e. P ) |
| 158 |
3 10
|
grpcl |
|- ( ( H e. Grp /\ A e. P /\ ( L .x. ( N .- A ) ) e. P ) -> ( A .+ ( L .x. ( N .- A ) ) ) e. P ) |
| 159 |
112 12 157 158
|
syl3anc |
|- ( ph -> ( A .+ ( L .x. ( N .- A ) ) ) e. P ) |
| 160 |
24 159
|
eqeltrd |
|- ( ph -> B e. P ) |
| 161 |
3 4
|
grpsubcl |
|- ( ( H e. Grp /\ B e. P /\ X e. P ) -> ( B .- X ) e. P ) |
| 162 |
112 160 6 161
|
syl3anc |
|- ( ph -> ( B .- X ) e. P ) |
| 163 |
71 38 17
|
subne0d |
|- ( ph -> ( L - M ) =/= 0 ) |
| 164 |
23
|
oveq2d |
|- ( ph -> ( ( L - M ) .x. ( X .- A ) ) = ( ( L - M ) .x. ( M .x. ( N .- A ) ) ) ) |
| 165 |
38 117
|
mulcomd |
|- ( ph -> ( M x. ( L - M ) ) = ( ( L - M ) x. M ) ) |
| 166 |
165
|
oveq1d |
|- ( ph -> ( ( M x. ( L - M ) ) .x. ( N .- A ) ) = ( ( ( L - M ) x. M ) .x. ( N .- A ) ) ) |
| 167 |
3 98 5 8
|
clmvsass |
|- ( ( H e. CMod /\ ( M e. R /\ ( L - M ) e. R /\ ( N .- A ) e. P ) ) -> ( ( M x. ( L - M ) ) .x. ( N .- A ) ) = ( M .x. ( ( L - M ) .x. ( N .- A ) ) ) ) |
| 168 |
91 97 100 155 167
|
syl13anc |
|- ( ph -> ( ( M x. ( L - M ) ) .x. ( N .- A ) ) = ( M .x. ( ( L - M ) .x. ( N .- A ) ) ) ) |
| 169 |
3 98 5 8
|
clmvsass |
|- ( ( H e. CMod /\ ( ( L - M ) e. R /\ M e. R /\ ( N .- A ) e. P ) ) -> ( ( ( L - M ) x. M ) .x. ( N .- A ) ) = ( ( L - M ) .x. ( M .x. ( N .- A ) ) ) ) |
| 170 |
91 100 97 155 169
|
syl13anc |
|- ( ph -> ( ( ( L - M ) x. M ) .x. ( N .- A ) ) = ( ( L - M ) .x. ( M .x. ( N .- A ) ) ) ) |
| 171 |
166 168 170
|
3eqtr3d |
|- ( ph -> ( M .x. ( ( L - M ) .x. ( N .- A ) ) ) = ( ( L - M ) .x. ( M .x. ( N .- A ) ) ) ) |
| 172 |
3 5 98 8 4 134 136 92 97 155
|
lmodsubdir |
|- ( ph -> ( ( L ( -g ` ( Scalar ` H ) ) M ) .x. ( N .- A ) ) = ( ( L .x. ( N .- A ) ) .- ( M .x. ( N .- A ) ) ) ) |
| 173 |
98 8
|
clmsub |
|- ( ( H e. CMod /\ L e. R /\ M e. R ) -> ( L - M ) = ( L ( -g ` ( Scalar ` H ) ) M ) ) |
| 174 |
91 92 97 173
|
syl3anc |
|- ( ph -> ( L - M ) = ( L ( -g ` ( Scalar ` H ) ) M ) ) |
| 175 |
174
|
oveq1d |
|- ( ph -> ( ( L - M ) .x. ( N .- A ) ) = ( ( L ( -g ` ( Scalar ` H ) ) M ) .x. ( N .- A ) ) ) |
| 176 |
24
|
oveq1d |
|- ( ph -> ( B .- A ) = ( ( A .+ ( L .x. ( N .- A ) ) ) .- A ) ) |
| 177 |
|
lmodabl |
|- ( H e. LMod -> H e. Abel ) |
| 178 |
136 177
|
syl |
|- ( ph -> H e. Abel ) |
| 179 |
3 10 4
|
ablpncan2 |
|- ( ( H e. Abel /\ A e. P /\ ( L .x. ( N .- A ) ) e. P ) -> ( ( A .+ ( L .x. ( N .- A ) ) ) .- A ) = ( L .x. ( N .- A ) ) ) |
| 180 |
178 12 157 179
|
syl3anc |
|- ( ph -> ( ( A .+ ( L .x. ( N .- A ) ) ) .- A ) = ( L .x. ( N .- A ) ) ) |
| 181 |
176 180
|
eqtrd |
|- ( ph -> ( B .- A ) = ( L .x. ( N .- A ) ) ) |
| 182 |
181 23
|
oveq12d |
|- ( ph -> ( ( B .- A ) .- ( X .- A ) ) = ( ( L .x. ( N .- A ) ) .- ( M .x. ( N .- A ) ) ) ) |
| 183 |
172 175 182
|
3eqtr4d |
|- ( ph -> ( ( L - M ) .x. ( N .- A ) ) = ( ( B .- A ) .- ( X .- A ) ) ) |
| 184 |
3 4
|
grpnnncan2 |
|- ( ( H e. Grp /\ ( B e. P /\ X e. P /\ A e. P ) ) -> ( ( B .- A ) .- ( X .- A ) ) = ( B .- X ) ) |
| 185 |
112 160 6 12 184
|
syl13anc |
|- ( ph -> ( ( B .- A ) .- ( X .- A ) ) = ( B .- X ) ) |
| 186 |
183 185
|
eqtrd |
|- ( ph -> ( ( L - M ) .x. ( N .- A ) ) = ( B .- X ) ) |
| 187 |
186
|
oveq2d |
|- ( ph -> ( M .x. ( ( L - M ) .x. ( N .- A ) ) ) = ( M .x. ( B .- X ) ) ) |
| 188 |
164 171 187
|
3eqtr2rd |
|- ( ph -> ( M .x. ( B .- X ) ) = ( ( L - M ) .x. ( X .- A ) ) ) |
| 189 |
3 5 98 8 11 97 100 162 123 14 188
|
cvsmuleqdivd |
|- ( ph -> ( B .- X ) = ( ( ( L - M ) / M ) .x. ( X .- A ) ) ) |
| 190 |
3 5 98 8 11 100 97 162 123 163 14 189
|
cvsdiveqd |
|- ( ph -> ( ( M / ( L - M ) ) .x. ( B .- X ) ) = ( X .- A ) ) |
| 191 |
152 190
|
eqtr4d |
|- ( ph -> ( ( K / ( 1 - K ) ) .x. ( Y .- X ) ) = ( ( M / ( L - M ) ) .x. ( B .- X ) ) ) |
| 192 |
3 5 98 8 11 97 100 153 162 14 163 191
|
cvsdiveqd |
|- ( ph -> ( ( ( L - M ) / M ) .x. ( ( K / ( 1 - K ) ) .x. ( Y .- X ) ) ) = ( B .- X ) ) |
| 193 |
116 121 192
|
3eqtr3rd |
|- ( ph -> ( B .- X ) = ( ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) .x. ( Y .- X ) ) ) |
| 194 |
|
oveq1 |
|- ( k = ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) -> ( k .x. ( Y .- X ) ) = ( ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) .x. ( Y .- X ) ) ) |
| 195 |
194
|
rspceeqv |
|- ( ( ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) e. ( 0 [,] 1 ) /\ ( B .- X ) = ( ( ( ( L x. K ) - ( M x. K ) ) / ( ( M x. 1 ) - ( M x. K ) ) ) .x. ( Y .- X ) ) ) -> E. k e. ( 0 [,] 1 ) ( B .- X ) = ( k .x. ( Y .- X ) ) ) |
| 196 |
90 193 195
|
syl2anc |
|- ( ph -> E. k e. ( 0 [,] 1 ) ( B .- X ) = ( k .x. ( Y .- X ) ) ) |
| 197 |
1 2 3 4 5 6 7 11 160
|
ttgelitv |
|- ( ph -> ( B e. ( X I Y ) <-> E. k e. ( 0 [,] 1 ) ( B .- X ) = ( k .x. ( Y .- X ) ) ) ) |
| 198 |
196 197
|
mpbird |
|- ( ph -> B e. ( X I Y ) ) |