Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( G e. *MetSp -> G e. _V ) |
2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
3 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
4 |
2 3
|
xmssym |
|- ( ( G e. *MetSp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( dist ` G ) y ) = ( y ( dist ` G ) x ) ) |
5 |
4
|
3expb |
|- ( ( G e. *MetSp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( dist ` G ) y ) = ( y ( dist ` G ) x ) ) |
6 |
5
|
ralrimivva |
|- ( G e. *MetSp -> A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( x ( dist ` G ) y ) = ( y ( dist ` G ) x ) ) |
7 |
|
simpl |
|- ( ( G e. *MetSp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> G e. *MetSp ) |
8 |
|
simpr3 |
|- ( ( G e. *MetSp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> z e. ( Base ` G ) ) |
9 |
|
equid |
|- z = z |
10 |
2 3
|
xmseq0 |
|- ( ( G e. *MetSp /\ z e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( ( z ( dist ` G ) z ) = 0 <-> z = z ) ) |
11 |
9 10
|
mpbiri |
|- ( ( G e. *MetSp /\ z e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( z ( dist ` G ) z ) = 0 ) |
12 |
7 8 8 11
|
syl3anc |
|- ( ( G e. *MetSp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( z ( dist ` G ) z ) = 0 ) |
13 |
12
|
eqeq2d |
|- ( ( G e. *MetSp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( ( x ( dist ` G ) y ) = ( z ( dist ` G ) z ) <-> ( x ( dist ` G ) y ) = 0 ) ) |
14 |
2 3
|
xmseq0 |
|- ( ( G e. *MetSp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( ( x ( dist ` G ) y ) = 0 <-> x = y ) ) |
15 |
14
|
3adant3r3 |
|- ( ( G e. *MetSp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( ( x ( dist ` G ) y ) = 0 <-> x = y ) ) |
16 |
13 15
|
bitrd |
|- ( ( G e. *MetSp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( ( x ( dist ` G ) y ) = ( z ( dist ` G ) z ) <-> x = y ) ) |
17 |
16
|
biimpd |
|- ( ( G e. *MetSp /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( ( x ( dist ` G ) y ) = ( z ( dist ` G ) z ) -> x = y ) ) |
18 |
17
|
ralrimivvva |
|- ( G e. *MetSp -> A. x e. ( Base ` G ) A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( x ( dist ` G ) y ) = ( z ( dist ` G ) z ) -> x = y ) ) |
19 |
6 18
|
jca |
|- ( G e. *MetSp -> ( A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( x ( dist ` G ) y ) = ( y ( dist ` G ) x ) /\ A. x e. ( Base ` G ) A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( x ( dist ` G ) y ) = ( z ( dist ` G ) z ) -> x = y ) ) ) |
20 |
|
eqid |
|- ( Itv ` G ) = ( Itv ` G ) |
21 |
2 3 20
|
istrkgc |
|- ( G e. TarskiGC <-> ( G e. _V /\ ( A. x e. ( Base ` G ) A. y e. ( Base ` G ) ( x ( dist ` G ) y ) = ( y ( dist ` G ) x ) /\ A. x e. ( Base ` G ) A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( x ( dist ` G ) y ) = ( z ( dist ` G ) z ) -> x = y ) ) ) ) |
22 |
1 19 21
|
sylanbrc |
|- ( G e. *MetSp -> G e. TarskiGC ) |