Metamath Proof Explorer


Theorem xmstrkgc

Description: Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019)

Ref Expression
Assertion xmstrkgc G ∞MetSp G 𝒢 Tarski C

Proof

Step Hyp Ref Expression
1 elex G ∞MetSp G V
2 eqid Base G = Base G
3 eqid dist G = dist G
4 2 3 xmssym G ∞MetSp x Base G y Base G x dist G y = y dist G x
5 4 3expb G ∞MetSp x Base G y Base G x dist G y = y dist G x
6 5 ralrimivva G ∞MetSp x Base G y Base G x dist G y = y dist G x
7 simpl G ∞MetSp x Base G y Base G z Base G G ∞MetSp
8 simpr3 G ∞MetSp x Base G y Base G z Base G z Base G
9 equid z = z
10 2 3 xmseq0 G ∞MetSp z Base G z Base G z dist G z = 0 z = z
11 9 10 mpbiri G ∞MetSp z Base G z Base G z dist G z = 0
12 7 8 8 11 syl3anc G ∞MetSp x Base G y Base G z Base G z dist G z = 0
13 12 eqeq2d G ∞MetSp x Base G y Base G z Base G x dist G y = z dist G z x dist G y = 0
14 2 3 xmseq0 G ∞MetSp x Base G y Base G x dist G y = 0 x = y
15 14 3adant3r3 G ∞MetSp x Base G y Base G z Base G x dist G y = 0 x = y
16 13 15 bitrd G ∞MetSp x Base G y Base G z Base G x dist G y = z dist G z x = y
17 16 biimpd G ∞MetSp x Base G y Base G z Base G x dist G y = z dist G z x = y
18 17 ralrimivvva G ∞MetSp x Base G y Base G z Base G x dist G y = z dist G z x = y
19 6 18 jca G ∞MetSp x Base G y Base G x dist G y = y dist G x x Base G y Base G z Base G x dist G y = z dist G z x = y
20 eqid Itv G = Itv G
21 2 3 20 istrkgc G 𝒢 Tarski C G V x Base G y Base G x dist G y = y dist G x x Base G y Base G z Base G x dist G y = z dist G z x = y
22 1 19 21 sylanbrc G ∞MetSp G 𝒢 Tarski C