| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐺 ∈ ∞MetSp → 𝐺 ∈ V ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 4 |
2 3
|
xmssym |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) |
| 5 |
4
|
3expb |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) |
| 6 |
5
|
ralrimivva |
⊢ ( 𝐺 ∈ ∞MetSp → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ ∞MetSp ) |
| 8 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
| 9 |
|
equid |
⊢ 𝑧 = 𝑧 |
| 10 |
2 3
|
xmseq0 |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑧 ( dist ‘ 𝐺 ) 𝑧 ) = 0 ↔ 𝑧 = 𝑧 ) ) |
| 11 |
9 10
|
mpbiri |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑧 ( dist ‘ 𝐺 ) 𝑧 ) = 0 ) |
| 12 |
7 8 8 11
|
syl3anc |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑧 ( dist ‘ 𝐺 ) 𝑧 ) = 0 ) |
| 13 |
12
|
eqeq2d |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist ‘ 𝐺 ) 𝑧 ) ↔ ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = 0 ) ) |
| 14 |
2 3
|
xmseq0 |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 15 |
14
|
3adant3r3 |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 16 |
13 15
|
bitrd |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist ‘ 𝐺 ) 𝑧 ) ↔ 𝑥 = 𝑦 ) ) |
| 17 |
16
|
biimpd |
⊢ ( ( 𝐺 ∈ ∞MetSp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist ‘ 𝐺 ) 𝑧 ) → 𝑥 = 𝑦 ) ) |
| 18 |
17
|
ralrimivvva |
⊢ ( 𝐺 ∈ ∞MetSp → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist ‘ 𝐺 ) 𝑧 ) → 𝑥 = 𝑦 ) ) |
| 19 |
6 18
|
jca |
⊢ ( 𝐺 ∈ ∞MetSp → ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist ‘ 𝐺 ) 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
| 20 |
|
eqid |
⊢ ( Itv ‘ 𝐺 ) = ( Itv ‘ 𝐺 ) |
| 21 |
2 3 20
|
istrkgc |
⊢ ( 𝐺 ∈ TarskiGC ↔ ( 𝐺 ∈ V ∧ ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑥 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist ‘ 𝐺 ) 𝑧 ) → 𝑥 = 𝑦 ) ) ) ) |
| 22 |
1 19 21
|
sylanbrc |
⊢ ( 𝐺 ∈ ∞MetSp → 𝐺 ∈ TarskiGC ) |