| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvsdiveqd.v |
|- V = ( Base ` W ) |
| 2 |
|
cvsdiveqd.t |
|- .x. = ( .s ` W ) |
| 3 |
|
cvsdiveqd.f |
|- F = ( Scalar ` W ) |
| 4 |
|
cvsdiveqd.k |
|- K = ( Base ` F ) |
| 5 |
|
cvsdiveqd.w |
|- ( ph -> W e. CVec ) |
| 6 |
|
cvsdiveqd.a |
|- ( ph -> A e. K ) |
| 7 |
|
cvsdiveqd.b |
|- ( ph -> B e. K ) |
| 8 |
|
cvsdiveqd.x |
|- ( ph -> X e. V ) |
| 9 |
|
cvsdiveqd.y |
|- ( ph -> Y e. V ) |
| 10 |
|
cvsdiveqd.1 |
|- ( ph -> A =/= 0 ) |
| 11 |
|
cvsmuleqdivd.1 |
|- ( ph -> ( A .x. X ) = ( B .x. Y ) ) |
| 12 |
11
|
oveq2d |
|- ( ph -> ( ( 1 / A ) .x. ( A .x. X ) ) = ( ( 1 / A ) .x. ( B .x. Y ) ) ) |
| 13 |
5
|
cvsclm |
|- ( ph -> W e. CMod ) |
| 14 |
3 4
|
clmsscn |
|- ( W e. CMod -> K C_ CC ) |
| 15 |
13 14
|
syl |
|- ( ph -> K C_ CC ) |
| 16 |
15 6
|
sseldd |
|- ( ph -> A e. CC ) |
| 17 |
16 10
|
recid2d |
|- ( ph -> ( ( 1 / A ) x. A ) = 1 ) |
| 18 |
17
|
oveq1d |
|- ( ph -> ( ( ( 1 / A ) x. A ) .x. X ) = ( 1 .x. X ) ) |
| 19 |
3
|
clm1 |
|- ( W e. CMod -> 1 = ( 1r ` F ) ) |
| 20 |
13 19
|
syl |
|- ( ph -> 1 = ( 1r ` F ) ) |
| 21 |
3
|
clmring |
|- ( W e. CMod -> F e. Ring ) |
| 22 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
| 23 |
4 22
|
ringidcl |
|- ( F e. Ring -> ( 1r ` F ) e. K ) |
| 24 |
13 21 23
|
3syl |
|- ( ph -> ( 1r ` F ) e. K ) |
| 25 |
20 24
|
eqeltrd |
|- ( ph -> 1 e. K ) |
| 26 |
3 4
|
cvsdivcl |
|- ( ( W e. CVec /\ ( 1 e. K /\ A e. K /\ A =/= 0 ) ) -> ( 1 / A ) e. K ) |
| 27 |
5 25 6 10 26
|
syl13anc |
|- ( ph -> ( 1 / A ) e. K ) |
| 28 |
1 3 2 4
|
clmvsass |
|- ( ( W e. CMod /\ ( ( 1 / A ) e. K /\ A e. K /\ X e. V ) ) -> ( ( ( 1 / A ) x. A ) .x. X ) = ( ( 1 / A ) .x. ( A .x. X ) ) ) |
| 29 |
13 27 6 8 28
|
syl13anc |
|- ( ph -> ( ( ( 1 / A ) x. A ) .x. X ) = ( ( 1 / A ) .x. ( A .x. X ) ) ) |
| 30 |
1 2
|
clmvs1 |
|- ( ( W e. CMod /\ X e. V ) -> ( 1 .x. X ) = X ) |
| 31 |
13 8 30
|
syl2anc |
|- ( ph -> ( 1 .x. X ) = X ) |
| 32 |
18 29 31
|
3eqtr3d |
|- ( ph -> ( ( 1 / A ) .x. ( A .x. X ) ) = X ) |
| 33 |
15 7
|
sseldd |
|- ( ph -> B e. CC ) |
| 34 |
33 16 10
|
divrec2d |
|- ( ph -> ( B / A ) = ( ( 1 / A ) x. B ) ) |
| 35 |
34
|
oveq1d |
|- ( ph -> ( ( B / A ) .x. Y ) = ( ( ( 1 / A ) x. B ) .x. Y ) ) |
| 36 |
1 3 2 4
|
clmvsass |
|- ( ( W e. CMod /\ ( ( 1 / A ) e. K /\ B e. K /\ Y e. V ) ) -> ( ( ( 1 / A ) x. B ) .x. Y ) = ( ( 1 / A ) .x. ( B .x. Y ) ) ) |
| 37 |
13 27 7 9 36
|
syl13anc |
|- ( ph -> ( ( ( 1 / A ) x. B ) .x. Y ) = ( ( 1 / A ) .x. ( B .x. Y ) ) ) |
| 38 |
35 37
|
eqtr2d |
|- ( ph -> ( ( 1 / A ) .x. ( B .x. Y ) ) = ( ( B / A ) .x. Y ) ) |
| 39 |
12 32 38
|
3eqtr3d |
|- ( ph -> X = ( ( B / A ) .x. Y ) ) |