| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvsdiveqd.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
cvsdiveqd.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
cvsdiveqd.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
cvsdiveqd.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
cvsdiveqd.w |
⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) |
| 6 |
|
cvsdiveqd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 7 |
|
cvsdiveqd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
| 8 |
|
cvsdiveqd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
cvsdiveqd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 10 |
|
cvsdiveqd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 11 |
|
cvsmuleqdivd.1 |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑌 ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) = ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) ) |
| 13 |
5
|
cvsclm |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 14 |
3 4
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
| 16 |
15 6
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 17 |
16 10
|
recid2d |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 𝐴 ) · 𝐴 ) · 𝑋 ) = ( 1 · 𝑋 ) ) |
| 19 |
3
|
clm1 |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |
| 20 |
13 19
|
syl |
⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐹 ) ) |
| 21 |
3
|
clmring |
⊢ ( 𝑊 ∈ ℂMod → 𝐹 ∈ Ring ) |
| 22 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 23 |
4 22
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 24 |
13 21 23
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 25 |
20 24
|
eqeltrd |
⊢ ( 𝜑 → 1 ∈ 𝐾 ) |
| 26 |
3 4
|
cvsdivcl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 1 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ( 1 / 𝐴 ) ∈ 𝐾 ) |
| 27 |
5 25 6 10 26
|
syl13anc |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ 𝐾 ) |
| 28 |
1 3 2 4
|
clmvsass |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 1 / 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) · 𝑋 ) = ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 29 |
13 27 6 8 28
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 1 / 𝐴 ) · 𝐴 ) · 𝑋 ) = ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
| 30 |
1 2
|
clmvs1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 31 |
13 8 30
|
syl2anc |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |
| 32 |
18 29 31
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) = 𝑋 ) |
| 33 |
15 7
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 34 |
33 16 10
|
divrec2d |
⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) = ( ( 1 / 𝐴 ) · 𝐵 ) ) |
| 35 |
34
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · 𝑌 ) = ( ( ( 1 / 𝐴 ) · 𝐵 ) · 𝑌 ) ) |
| 36 |
1 3 2 4
|
clmvsass |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 1 / 𝐴 ) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 1 / 𝐴 ) · 𝐵 ) · 𝑌 ) = ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) ) |
| 37 |
13 27 7 9 36
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 1 / 𝐴 ) · 𝐵 ) · 𝑌 ) = ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) ) |
| 38 |
35 37
|
eqtr2d |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) = ( ( 𝐵 / 𝐴 ) · 𝑌 ) ) |
| 39 |
12 32 38
|
3eqtr3d |
⊢ ( 𝜑 → 𝑋 = ( ( 𝐵 / 𝐴 ) · 𝑌 ) ) |