Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) |
2 |
1
|
txbasex |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) → ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ∈ V ) |
3 |
|
resmpo |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ↾ ( 𝐴 × 𝐶 ) ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) |
4 |
|
resss |
⊢ ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ↾ ( 𝐴 × 𝐶 ) ) ⊆ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) |
5 |
3 4
|
eqsstrrdi |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) |
7 |
|
rnss |
⊢ ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) → ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) |
9 |
|
tgss |
⊢ ( ( ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ∈ V ∧ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ⊆ ( topGen ‘ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
10 |
2 8 9
|
syl2an2r |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ⊆ ( topGen ‘ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
11 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
12 |
|
ssexg |
⊢ ( ( 𝐶 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊 ) → 𝐶 ∈ V ) |
13 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) |
14 |
13
|
txval |
⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
15 |
11 12 14
|
syl2an |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
16 |
15
|
an4s |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
17 |
16
|
ancoms |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
18 |
1
|
txval |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) → ( 𝐵 ×t 𝐷 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( 𝐵 ×t 𝐷 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
20 |
10 17 19
|
3sstr4d |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) → ( 𝐴 ×t 𝐶 ) ⊆ ( 𝐵 ×t 𝐷 ) ) |