Metamath Proof Explorer


Theorem txss12

Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion txss12 ( ( ( 𝐵𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐶𝐷 ) ) → ( 𝐴 ×t 𝐶 ) ⊆ ( 𝐵 ×t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 eqid ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) )
2 1 txbasex ( ( 𝐵𝑉𝐷𝑊 ) → ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) ∈ V )
3 resmpo ( ( 𝐴𝐵𝐶𝐷 ) → ( ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) ↾ ( 𝐴 × 𝐶 ) ) = ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) )
4 resss ( ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) ↾ ( 𝐴 × 𝐶 ) ) ⊆ ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) )
5 3 4 eqsstrrdi ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) )
6 5 adantl ( ( ( 𝐵𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐶𝐷 ) ) → ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) )
7 rnss ( ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) → ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) )
8 6 7 syl ( ( ( 𝐵𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐶𝐷 ) ) → ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) )
9 tgss ( ( ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) ∈ V ∧ ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ⊆ ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) → ( topGen ‘ ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ⊆ ( topGen ‘ ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) )
10 2 8 9 syl2an2r ( ( ( 𝐵𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐶𝐷 ) ) → ( topGen ‘ ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) ⊆ ( topGen ‘ ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) )
11 ssexg ( ( 𝐴𝐵𝐵𝑉 ) → 𝐴 ∈ V )
12 ssexg ( ( 𝐶𝐷𝐷𝑊 ) → 𝐶 ∈ V )
13 eqid ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) )
14 13 txval ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) )
15 11 12 14 syl2an ( ( ( 𝐴𝐵𝐵𝑉 ) ∧ ( 𝐶𝐷𝐷𝑊 ) ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) )
16 15 an4s ( ( ( 𝐴𝐵𝐶𝐷 ) ∧ ( 𝐵𝑉𝐷𝑊 ) ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) )
17 16 ancoms ( ( ( 𝐵𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐶𝐷 ) ) → ( 𝐴 ×t 𝐶 ) = ( topGen ‘ ran ( 𝑥𝐴 , 𝑦𝐶 ↦ ( 𝑥 × 𝑦 ) ) ) )
18 1 txval ( ( 𝐵𝑉𝐷𝑊 ) → ( 𝐵 ×t 𝐷 ) = ( topGen ‘ ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) )
19 18 adantr ( ( ( 𝐵𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐶𝐷 ) ) → ( 𝐵 ×t 𝐷 ) = ( topGen ‘ ran ( 𝑥𝐵 , 𝑦𝐷 ↦ ( 𝑥 × 𝑦 ) ) ) )
20 10 17 19 3sstr4d ( ( ( 𝐵𝑉𝐷𝑊 ) ∧ ( 𝐴𝐵𝐶𝐷 ) ) → ( 𝐴 ×t 𝐶 ) ⊆ ( 𝐵 ×t 𝐷 ) )