| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulmdv.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
ulmdv.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 3 |
|
ulmdv.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
ulmdv.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 5 |
|
ulmdv.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) |
| 6 |
|
ulmdv.l |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) |
| 7 |
|
ulmdv.u |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) |
| 8 |
|
ovex |
⊢ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 9 |
8
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑍 ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 10 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) |
| 11 |
10
|
fnmpt |
⊢ ( ∀ 𝑘 ∈ 𝑍 ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ V → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ) |
| 12 |
9 11
|
mp1i |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ) |
| 13 |
|
ulmf2 |
⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) Fn 𝑍 ∧ ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) ( ⇝𝑢 ‘ 𝑋 ) 𝐻 ) → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 14 |
12 7 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑋 ) ) |
| 15 |
14
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ ( ℂ ↑m 𝑋 ) ) |
| 16 |
|
elmapi |
⊢ ( ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) ∈ ( ℂ ↑m 𝑋 ) → ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) : 𝑋 ⟶ ℂ ) |
| 17 |
|
fdm |
⊢ ( ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = 𝑋 ) |
| 18 |
15 16 17
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → dom ( 𝑆 D ( 𝐹 ‘ 𝑘 ) ) = 𝑋 ) |