Metamath Proof Explorer


Theorem ulmdvlem2

Description: Lemma for ulmdv . (Contributed by Mario Carneiro, 8-May-2015)

Ref Expression
Hypotheses ulmdv.z Z=M
ulmdv.s φS
ulmdv.m φM
ulmdv.f φF:ZX
ulmdv.g φG:X
ulmdv.l φzXkZFkzGz
ulmdv.u φkZSDFkuXH
Assertion ulmdvlem2 φkZdomFkS=X

Proof

Step Hyp Ref Expression
1 ulmdv.z Z=M
2 ulmdv.s φS
3 ulmdv.m φM
4 ulmdv.f φF:ZX
5 ulmdv.g φG:X
6 ulmdv.l φzXkZFkzGz
7 ulmdv.u φkZSDFkuXH
8 ovex SDFkV
9 8 rgenw kZSDFkV
10 eqid kZSDFk=kZSDFk
11 10 fnmpt kZSDFkVkZSDFkFnZ
12 9 11 mp1i φkZSDFkFnZ
13 ulmf2 kZSDFkFnZkZSDFkuXHkZSDFk:ZX
14 12 7 13 syl2anc φkZSDFk:ZX
15 14 fvmptelcdm φkZSDFkX
16 elmapi SDFkXFkS:X
17 fdm FkS:XdomFkS=X
18 15 16 17 3syl φkZdomFkS=X