Metamath Proof Explorer


Theorem unixp0

Description: A Cartesian product is empty iff its union is empty. (Contributed by NM, 20-Sep-2006)

Ref Expression
Assertion unixp0 ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 × 𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 unieq ( ( 𝐴 × 𝐵 ) = ∅ → ( 𝐴 × 𝐵 ) = ∅ )
2 uni0 ∅ = ∅
3 1 2 eqtrdi ( ( 𝐴 × 𝐵 ) = ∅ → ( 𝐴 × 𝐵 ) = ∅ )
4 n0 ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) )
5 elxp3 ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝑧 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ) )
6 elssuni ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) → ⟨ 𝑥 , 𝑦 ⟩ ⊆ ( 𝐴 × 𝐵 ) )
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 opnzi 𝑥 , 𝑦 ⟩ ≠ ∅
10 ssn0 ( ( ⟨ 𝑥 , 𝑦 ⟩ ⊆ ( 𝐴 × 𝐵 ) ∧ ⟨ 𝑥 , 𝑦 ⟩ ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≠ ∅ )
11 6 9 10 sylancl ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) → ( 𝐴 × 𝐵 ) ≠ ∅ )
12 11 adantl ( ( ⟨ 𝑥 , 𝑦 ⟩ = 𝑧 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≠ ∅ )
13 12 exlimivv ( ∃ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝑧 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≠ ∅ )
14 5 13 sylbi ( 𝑧 ∈ ( 𝐴 × 𝐵 ) → ( 𝐴 × 𝐵 ) ≠ ∅ )
15 14 exlimiv ( ∃ 𝑧 𝑧 ∈ ( 𝐴 × 𝐵 ) → ( 𝐴 × 𝐵 ) ≠ ∅ )
16 4 15 sylbi ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 × 𝐵 ) ≠ ∅ )
17 16 necon4i ( ( 𝐴 × 𝐵 ) = ∅ → ( 𝐴 × 𝐵 ) = ∅ )
18 3 17 impbii ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 × 𝐵 ) = ∅ )