Metamath Proof Explorer


Theorem unopadj2

Description: The adjoint of a unitary operator is its inverse (converse). Equation 2 of AkhiezerGlazman p. 72. (Contributed by NM, 23-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion unopadj2 ( 𝑇 ∈ UniOp → ( adj𝑇 ) = 𝑇 )

Proof

Step Hyp Ref Expression
1 unoplin ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp )
2 lnopf ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ )
3 1 2 syl ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ )
4 cnvunop ( 𝑇 ∈ UniOp → 𝑇 ∈ UniOp )
5 unoplin ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp )
6 lnopf ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ )
7 4 5 6 3syl ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ )
8 unopadj ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
9 8 3expib ( 𝑇 ∈ UniOp → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ) )
10 9 ralrimivv ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
11 adjeq ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) ) → ( adj𝑇 ) = 𝑇 )
12 3 7 10 11 syl3anc ( 𝑇 ∈ UniOp → ( adj𝑇 ) = 𝑇 )