Metamath Proof Explorer


Theorem usgr2v1e2w

Description: A simple graph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021)

Ref Expression
Assertion usgr2v1e2w ( ( 𝐴𝑋𝐵𝑌𝐴𝐵 ) → ⟨ { 𝐴 , 𝐵 } , ⟨“ { 𝐴 , 𝐵 } ”⟩ ⟩ ∈ USGraph )

Proof

Step Hyp Ref Expression
1 prex { 𝐴 , 𝐵 } ∈ V
2 s1val ( { 𝐴 , 𝐵 } ∈ V → ⟨“ { 𝐴 , 𝐵 } ”⟩ = { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ } )
3 1 2 mp1i ( ( 𝐴𝑋𝐵𝑌𝐴𝐵 ) → ⟨“ { 𝐴 , 𝐵 } ”⟩ = { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ } )
4 3 opeq2d ( ( 𝐴𝑋𝐵𝑌𝐴𝐵 ) → ⟨ { 𝐴 , 𝐵 } , ⟨“ { 𝐴 , 𝐵 } ”⟩ ⟩ = ⟨ { 𝐴 , 𝐵 } , { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ } ⟩ )
5 prid1g ( 𝐴𝑋𝐴 ∈ { 𝐴 , 𝐵 } )
6 prid2g ( 𝐵𝑌𝐵 ∈ { 𝐴 , 𝐵 } )
7 5 6 anim12i ( ( 𝐴𝑋𝐵𝑌 ) → ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) )
8 c0ex 0 ∈ V
9 1 8 pm3.2i ( { 𝐴 , 𝐵 } ∈ V ∧ 0 ∈ V )
10 7 9 jctil ( ( 𝐴𝑋𝐵𝑌 ) → ( ( { 𝐴 , 𝐵 } ∈ V ∧ 0 ∈ V ) ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) )
11 usgr1eop ( ( ( { 𝐴 , 𝐵 } ∈ V ∧ 0 ∈ V ) ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) → ( 𝐴𝐵 → ⟨ { 𝐴 , 𝐵 } , { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ } ⟩ ∈ USGraph ) )
12 11 imp ( ( ( ( { 𝐴 , 𝐵 } ∈ V ∧ 0 ∈ V ) ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) ) ∧ 𝐴𝐵 ) → ⟨ { 𝐴 , 𝐵 } , { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ } ⟩ ∈ USGraph )
13 10 12 stoic3 ( ( 𝐴𝑋𝐵𝑌𝐴𝐵 ) → ⟨ { 𝐴 , 𝐵 } , { ⟨ 0 , { 𝐴 , 𝐵 } ⟩ } ⟩ ∈ USGraph )
14 4 13 eqeltrd ( ( 𝐴𝑋𝐵𝑌𝐴𝐵 ) → ⟨ { 𝐴 , 𝐵 } , ⟨“ { 𝐴 , 𝐵 } ”⟩ ⟩ ∈ USGraph )