Metamath Proof Explorer


Theorem usgr2v1e2w

Description: A simple graph with two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021)

Ref Expression
Assertion usgr2v1e2w AXBYABAB⟨“AB”⟩USGraph

Proof

Step Hyp Ref Expression
1 prex ABV
2 s1val ABV⟨“AB”⟩=0AB
3 1 2 mp1i AXBYAB⟨“AB”⟩=0AB
4 3 opeq2d AXBYABAB⟨“AB”⟩=AB0AB
5 prid1g AXAAB
6 prid2g BYBAB
7 5 6 anim12i AXBYAABBAB
8 c0ex 0V
9 1 8 pm3.2i ABV0V
10 7 9 jctil AXBYABV0VAABBAB
11 usgr1eop ABV0VAABBABABAB0ABUSGraph
12 11 imp ABV0VAABBABABAB0ABUSGraph
13 10 12 stoic3 AXBYABAB0ABUSGraph
14 4 13 eqeltrd AXBYABAB⟨“AB”⟩USGraph