Metamath Proof Explorer


Theorem vonn0icc

Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0icc.x ( 𝜑𝑋 ∈ Fin )
vonn0icc.n ( 𝜑𝑋 ≠ ∅ )
vonn0icc.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
vonn0icc.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
vonn0icc.i 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) )
Assertion vonn0icc ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 vonn0icc.x ( 𝜑𝑋 ∈ Fin )
2 vonn0icc.n ( 𝜑𝑋 ≠ ∅ )
3 vonn0icc.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
4 vonn0icc.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
5 vonn0icc.i 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) )
6 fveq2 ( 𝑗 = 𝑘 → ( 𝑎𝑗 ) = ( 𝑎𝑘 ) )
7 fveq2 ( 𝑗 = 𝑘 → ( 𝑏𝑗 ) = ( 𝑏𝑘 ) )
8 6 7 oveq12d ( 𝑗 = 𝑘 → ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) = ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
9 8 fveq2d ( 𝑗 = 𝑘 → ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) = ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) )
10 9 cbvprodv 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) = ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) )
11 ifeq2 ( ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) = ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) → if ( 𝑥 = ∅ , 0 , ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) )
12 10 11 ax-mp if ( 𝑥 = ∅ , 0 , ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) )
13 12 a1i ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∧ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ) → if ( 𝑥 = ∅ , 0 , ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) )
14 13 mpoeq3ia ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) ) ) = ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) )
15 14 mpteq2i ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
16 1 3 4 5 15 vonicc ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) )
17 15 fveq1i ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) ) ) ) ‘ 𝑋 ) = ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) ‘ 𝑋 )
18 17 oveqi ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 )
19 18 a1i ( 𝜑 → ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗𝑥 ( vol ‘ ( ( 𝑎𝑗 ) [,) ( 𝑏𝑗 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) )
20 16 19 eqtrd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) )
21 eqid ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
22 21 1 2 3 4 hoidmvn0val ( 𝜑 → ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) )
23 3 ffvelrnda ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ )
24 4 ffvelrnda ( ( 𝜑𝑘𝑋 ) → ( 𝐵𝑘 ) ∈ ℝ )
25 23 24 voliccico ( ( 𝜑𝑘𝑋 ) → ( vol ‘ ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) ) ) = ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) )
26 25 eqcomd ( ( 𝜑𝑘𝑋 ) → ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) = ( vol ‘ ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) ) ) )
27 26 prodeq2dv ( 𝜑 → ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) ) ) )
28 20 22 27 3eqtrd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) ) ) )