Step |
Hyp |
Ref |
Expression |
1 |
|
ctvonmbl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ctvonmbl.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) |
3 |
|
ctvonmbl.3 |
⊢ ( 𝜑 → 𝐴 ≼ ω ) |
4 |
|
iunid |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 |
5 |
1
|
vonmea |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas ) |
6 |
|
eqid |
⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) |
7 |
5 6
|
dmmeasal |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) ∈ SAlg ) |
8 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ∈ Fin ) |
9 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( ℝ ↑m 𝑋 ) ) |
10 |
8 9
|
snvonmbl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ∈ dom ( voln ‘ 𝑋 ) ) |
11 |
7 3 10
|
saliuncl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 { 𝑥 } ∈ dom ( voln ‘ 𝑋 ) ) |
12 |
4 11
|
eqeltrrid |
⊢ ( 𝜑 → 𝐴 ∈ dom ( voln ‘ 𝑋 ) ) |