| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ctvonmbl.1 | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | ctvonmbl.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 3 |  | ctvonmbl.3 | ⊢ ( 𝜑  →  𝐴  ≼  ω ) | 
						
							| 4 |  | iunid | ⊢ ∪  𝑥  ∈  𝐴 { 𝑥 }  =  𝐴 | 
						
							| 5 | 1 | vonmea | ⊢ ( 𝜑  →  ( voln ‘ 𝑋 )  ∈  Meas ) | 
						
							| 6 |  | eqid | ⊢ dom  ( voln ‘ 𝑋 )  =  dom  ( voln ‘ 𝑋 ) | 
						
							| 7 | 5 6 | dmmeasal | ⊢ ( 𝜑  →  dom  ( voln ‘ 𝑋 )  ∈  SAlg ) | 
						
							| 8 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑋  ∈  Fin ) | 
						
							| 9 | 2 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 10 | 8 9 | snvonmbl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  { 𝑥 }  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 11 | 7 3 10 | saliuncl | ⊢ ( 𝜑  →  ∪  𝑥  ∈  𝐴 { 𝑥 }  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 12 | 4 11 | eqeltrrid | ⊢ ( 𝜑  →  𝐴  ∈  dom  ( voln ‘ 𝑋 ) ) |