Metamath Proof Explorer


Theorem ctvonmbl

Description: Any n-dimensional countable set is Lebesgue measurable. This is the second statement in Proposition 115G (e) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ctvonmbl.1 ( 𝜑𝑋 ∈ Fin )
ctvonmbl.2 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
ctvonmbl.3 ( 𝜑𝐴 ≼ ω )
Assertion ctvonmbl ( 𝜑𝐴 ∈ dom ( voln ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ctvonmbl.1 ( 𝜑𝑋 ∈ Fin )
2 ctvonmbl.2 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
3 ctvonmbl.3 ( 𝜑𝐴 ≼ ω )
4 iunid 𝑥𝐴 { 𝑥 } = 𝐴
5 1 vonmea ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas )
6 eqid dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 )
7 5 6 dmmeasal ( 𝜑 → dom ( voln ‘ 𝑋 ) ∈ SAlg )
8 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝑋 ∈ Fin )
9 2 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ( ℝ ↑m 𝑋 ) )
10 8 9 snvonmbl ( ( 𝜑𝑥𝐴 ) → { 𝑥 } ∈ dom ( voln ‘ 𝑋 ) )
11 7 3 10 saliuncl ( 𝜑 𝑥𝐴 { 𝑥 } ∈ dom ( voln ‘ 𝑋 ) )
12 4 11 eqeltrrid ( 𝜑𝐴 ∈ dom ( voln ‘ 𝑋 ) )