| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonn0ioo2.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | vonn0ioo2.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | vonn0ioo2.n | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 4 |  | vonn0ioo2.a | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | vonn0ioo2.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ ) | 
						
							| 6 |  | vonn0ioo2.i | ⊢ 𝐼  =  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  𝐼  =  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  𝑗  ∈  𝑋 ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝑋 | 
						
							| 10 | 1 9 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑋 ) | 
						
							| 11 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐴 | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑘 ℝ | 
						
							| 13 | 11 12 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ | 
						
							| 14 | 10 13 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 15 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑋  ↔  𝑗  ∈  𝑋 ) ) | 
						
							| 16 | 15 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑋 ) ) ) | 
						
							| 17 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐴  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴  ∈  ℝ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ ) ) | 
						
							| 19 | 16 18 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ ) ) ) | 
						
							| 20 | 14 19 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 21 |  | eqid | ⊢ ( 𝑘  ∈  𝑋  ↦  𝐴 )  =  ( 𝑘  ∈  𝑋  ↦  𝐴 ) | 
						
							| 22 | 21 | fvmpts | ⊢ ( ( 𝑗  ∈  𝑋  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℝ )  →  ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 23 | 8 20 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 24 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 25 | 24 12 | nfel | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ | 
						
							| 26 | 10 25 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 27 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵  ∈  ℝ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) ) | 
						
							| 29 | 16 28 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) ) ) | 
						
							| 30 | 26 29 5 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑘  ∈  𝑋  ↦  𝐵 )  =  ( 𝑘  ∈  𝑋  ↦  𝐵 ) | 
						
							| 32 | 31 | fvmpts | ⊢ ( ( 𝑗  ∈  𝑋  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ )  →  ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 33 | 8 30 32 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 34 | 23 33 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) )  =  ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 35 | 34 | ixpeq2dva | ⊢ ( 𝜑  →  X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) )  =  X 𝑗  ∈  𝑋 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 36 |  | nfcv | ⊢ Ⅎ 𝑘 (,) | 
						
							| 37 | 11 36 24 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑗 ( 𝐴 (,) 𝐵 ) | 
						
							| 39 | 17 | equcoms | ⊢ ( 𝑗  =  𝑘  →  𝐴  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 40 | 39 | eqcomd | ⊢ ( 𝑗  =  𝑘  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  =  𝐴 ) | 
						
							| 41 |  | eqidd | ⊢ ( 𝑗  =  𝑘  →  𝐴  =  𝐴 ) | 
						
							| 42 | 40 41 | eqtrd | ⊢ ( 𝑗  =  𝑘  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  =  𝐴 ) | 
						
							| 43 | 27 | equcoms | ⊢ ( 𝑗  =  𝑘  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 44 | 43 | eqcomd | ⊢ ( 𝑗  =  𝑘  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  𝐵 ) | 
						
							| 45 | 42 44 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 46 | 37 38 45 | cbvixp | ⊢ X 𝑗  ∈  𝑋 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  =  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →  X 𝑗  ∈  𝑋 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 )  =  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 48 | 35 47 | eqtrd | ⊢ ( 𝜑  →  X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) )  =  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 49 | 7 48 | eqtr4d | ⊢ ( 𝜑  →  𝐼  =  X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( ( voln ‘ 𝑋 ) ‘ X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) ) ) | 
						
							| 51 | 1 4 21 | fmptdf | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ ℝ ) | 
						
							| 52 | 1 5 31 | fmptdf | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  ↦  𝐵 ) : 𝑋 ⟶ ℝ ) | 
						
							| 53 |  | eqid | ⊢ X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) )  =  X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) | 
						
							| 54 | 2 3 51 52 53 | vonn0ioo | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ X 𝑗  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) )  =  ∏ 𝑗  ∈  𝑋 ( vol ‘ ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) ) ) | 
						
							| 55 | 23 33 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) )  =  ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( vol ‘ ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) )  =  ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 57 | 20 30 | voliooico | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) )  =  ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 58 | 57 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 [,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) )  =  ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 59 | 56 58 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑋 )  →  ( vol ‘ ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) )  =  ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 60 | 59 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  𝑋 ( vol ‘ ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) )  =  ∏ 𝑗  ∈  𝑋 ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 61 | 45 | fveq2d | ⊢ ( 𝑗  =  𝑘  →  ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) )  =  ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 62 |  | nfcv | ⊢ Ⅎ 𝑘 𝑋 | 
						
							| 63 |  | nfcv | ⊢ Ⅎ 𝑗 𝑋 | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑘 vol | 
						
							| 65 | 64 37 | nffv | ⊢ Ⅎ 𝑘 ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 66 |  | nfcv | ⊢ Ⅎ 𝑗 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) | 
						
							| 67 | 61 62 63 65 66 | cbvprod | ⊢ ∏ 𝑗  ∈  𝑋 ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) | 
						
							| 68 | 67 | a1i | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  𝑋 ( vol ‘ ( ⦋ 𝑗  /  𝑘 ⦌ 𝐴 (,) ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 69 | 60 68 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  𝑋 ( vol ‘ ( ( ( 𝑘  ∈  𝑋  ↦  𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘  ∈  𝑋  ↦  𝐵 ) ‘ 𝑗 ) ) )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 70 | 50 54 69 | 3eqtrd | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |