| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonn0ioo2.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
vonn0ioo2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
vonn0ioo2.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 4 |
|
vonn0ioo2.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
| 5 |
|
vonn0ioo2.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) |
| 6 |
|
vonn0ioo2.i |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 𝐼 = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → 𝑗 ∈ 𝑋 ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑋 |
| 10 |
1 9
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) |
| 11 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑘 ℝ |
| 13 |
11 12
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ |
| 14 |
10 13
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) |
| 15 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋 ) ) |
| 16 |
15
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) ) ) |
| 17 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐴 = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) ) |
| 19 |
16 18
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) ) ) |
| 20 |
14 19 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) |
| 21 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) |
| 22 |
21
|
fvmpts |
⊢ ( ( 𝑗 ∈ 𝑋 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
| 23 |
8 20 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
| 24 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
| 25 |
24 12
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ |
| 26 |
10 25
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
| 27 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) |
| 29 |
16 28
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) ) ) |
| 30 |
26 29 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) |
| 31 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) |
| 32 |
31
|
fvmpts |
⊢ ( ( 𝑗 ∈ 𝑋 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 33 |
8 30 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 34 |
23 33
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) = ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
| 35 |
34
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) = X 𝑗 ∈ 𝑋 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
| 36 |
|
nfcv |
⊢ Ⅎ 𝑘 (,) |
| 37 |
11 36 24
|
nfov |
⊢ Ⅎ 𝑘 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 38 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝐴 (,) 𝐵 ) |
| 39 |
17
|
equcoms |
⊢ ( 𝑗 = 𝑘 → 𝐴 = ⦋ 𝑗 / 𝑘 ⦌ 𝐴 ) |
| 40 |
39
|
eqcomd |
⊢ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 = 𝐴 ) |
| 41 |
|
eqidd |
⊢ ( 𝑗 = 𝑘 → 𝐴 = 𝐴 ) |
| 42 |
40 41
|
eqtrd |
⊢ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐴 = 𝐴 ) |
| 43 |
27
|
equcoms |
⊢ ( 𝑗 = 𝑘 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
| 44 |
43
|
eqcomd |
⊢ ( 𝑗 = 𝑘 → ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 𝐵 ) |
| 45 |
42 44
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) = ( 𝐴 (,) 𝐵 ) ) |
| 46 |
37 38 45
|
cbvixp |
⊢ X 𝑗 ∈ 𝑋 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → X 𝑗 ∈ 𝑋 ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 48 |
35 47
|
eqtrd |
⊢ ( 𝜑 → X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 49 |
7 48
|
eqtr4d |
⊢ ( 𝜑 → 𝐼 = X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ) |
| 50 |
49
|
fveq2d |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ) ) |
| 51 |
1 4 21
|
fmptdf |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℝ ) |
| 52 |
1 5 31
|
fmptdf |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℝ ) |
| 53 |
|
eqid |
⊢ X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) = X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) |
| 54 |
2 3 51 52 53
|
vonn0ioo |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ X 𝑗 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ) = ∏ 𝑗 ∈ 𝑋 ( vol ‘ ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ) ) |
| 55 |
23 33
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) = ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
| 56 |
55
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( vol ‘ ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ) = ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) ) |
| 57 |
20 30
|
voliooico |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) = ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) ) |
| 58 |
57
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 [,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) = ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) ) |
| 59 |
56 58
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( vol ‘ ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ) = ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) ) |
| 60 |
59
|
prodeq2dv |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝑋 ( vol ‘ ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ) = ∏ 𝑗 ∈ 𝑋 ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) ) |
| 61 |
45
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) = ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 62 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑋 |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑘 vol |
| 65 |
64 37
|
nffv |
⊢ Ⅎ 𝑘 ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) |
| 66 |
|
nfcv |
⊢ Ⅎ 𝑗 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) |
| 67 |
61 62 63 65 66
|
cbvprod |
⊢ ∏ 𝑗 ∈ 𝑋 ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) |
| 68 |
67
|
a1i |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝑋 ( vol ‘ ( ⦋ 𝑗 / 𝑘 ⦌ 𝐴 (,) ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 69 |
60 68
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝑋 ( vol ‘ ( ( ( 𝑘 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑗 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 70 |
50 54 69
|
3eqtrd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |