Metamath Proof Explorer


Theorem vonn0ioo2

Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0ioo2.k 𝑘 𝜑
vonn0ioo2.x ( 𝜑𝑋 ∈ Fin )
vonn0ioo2.n ( 𝜑𝑋 ≠ ∅ )
vonn0ioo2.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
vonn0ioo2.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
vonn0ioo2.i 𝐼 = X 𝑘𝑋 ( 𝐴 (,) 𝐵 )
Assertion vonn0ioo2 ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 vonn0ioo2.k 𝑘 𝜑
2 vonn0ioo2.x ( 𝜑𝑋 ∈ Fin )
3 vonn0ioo2.n ( 𝜑𝑋 ≠ ∅ )
4 vonn0ioo2.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
5 vonn0ioo2.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
6 vonn0ioo2.i 𝐼 = X 𝑘𝑋 ( 𝐴 (,) 𝐵 )
7 6 a1i ( 𝜑𝐼 = X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
8 simpr ( ( 𝜑𝑗𝑋 ) → 𝑗𝑋 )
9 nfv 𝑘 𝑗𝑋
10 1 9 nfan 𝑘 ( 𝜑𝑗𝑋 )
11 nfcsb1v 𝑘 𝑗 / 𝑘 𝐴
12 nfcv 𝑘
13 11 12 nfel 𝑘 𝑗 / 𝑘 𝐴 ∈ ℝ
14 10 13 nfim 𝑘 ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐴 ∈ ℝ )
15 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑋𝑗𝑋 ) )
16 15 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑋 ) ↔ ( 𝜑𝑗𝑋 ) ) )
17 csbeq1a ( 𝑘 = 𝑗𝐴 = 𝑗 / 𝑘 𝐴 )
18 17 eleq1d ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℝ ↔ 𝑗 / 𝑘 𝐴 ∈ ℝ ) )
19 16 18 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ ) ↔ ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐴 ∈ ℝ ) ) )
20 14 19 4 chvarfv ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐴 ∈ ℝ )
21 eqid ( 𝑘𝑋𝐴 ) = ( 𝑘𝑋𝐴 )
22 21 fvmpts ( ( 𝑗𝑋 𝑗 / 𝑘 𝐴 ∈ ℝ ) → ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
23 8 20 22 syl2anc ( ( 𝜑𝑗𝑋 ) → ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
24 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
25 24 12 nfel 𝑘 𝑗 / 𝑘 𝐵 ∈ ℝ
26 10 25 nfim 𝑘 ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ )
27 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
28 27 eleq1d ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ 𝑗 / 𝑘 𝐵 ∈ ℝ ) )
29 16 28 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ ) ) )
30 26 29 5 chvarfv ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ )
31 eqid ( 𝑘𝑋𝐵 ) = ( 𝑘𝑋𝐵 )
32 31 fvmpts ( ( 𝑗𝑋 𝑗 / 𝑘 𝐵 ∈ ℝ ) → ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
33 8 30 32 syl2anc ( ( 𝜑𝑗𝑋 ) → ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
34 23 33 oveq12d ( ( 𝜑𝑗𝑋 ) → ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) )
35 34 ixpeq2dva ( 𝜑X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) )
36 nfcv 𝑘 (,)
37 11 36 24 nfov 𝑘 ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 )
38 nfcv 𝑗 ( 𝐴 (,) 𝐵 )
39 17 equcoms ( 𝑗 = 𝑘𝐴 = 𝑗 / 𝑘 𝐴 )
40 39 eqcomd ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐴 = 𝐴 )
41 eqidd ( 𝑗 = 𝑘𝐴 = 𝐴 )
42 40 41 eqtrd ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐴 = 𝐴 )
43 27 equcoms ( 𝑗 = 𝑘𝐵 = 𝑗 / 𝑘 𝐵 )
44 43 eqcomd ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐵 = 𝐵 )
45 42 44 oveq12d ( 𝑗 = 𝑘 → ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) = ( 𝐴 (,) 𝐵 ) )
46 37 38 45 cbvixp X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) = X 𝑘𝑋 ( 𝐴 (,) 𝐵 )
47 46 a1i ( 𝜑X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) = X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
48 35 47 eqtrd ( 𝜑X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
49 7 48 eqtr4d ( 𝜑𝐼 = X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) )
50 49 fveq2d ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) )
51 1 4 21 fmptdf ( 𝜑 → ( 𝑘𝑋𝐴 ) : 𝑋 ⟶ ℝ )
52 1 5 31 fmptdf ( 𝜑 → ( 𝑘𝑋𝐵 ) : 𝑋 ⟶ ℝ )
53 eqid X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) )
54 2 3 51 52 53 vonn0ioo ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) (,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) = ∏ 𝑗𝑋 ( vol ‘ ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) )
55 23 33 oveq12d ( ( 𝜑𝑗𝑋 ) → ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 ) )
56 55 fveq2d ( ( 𝜑𝑗𝑋 ) → ( vol ‘ ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) = ( vol ‘ ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 ) ) )
57 20 30 voliooico ( ( 𝜑𝑗𝑋 ) → ( vol ‘ ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) ) = ( vol ‘ ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 ) ) )
58 57 eqcomd ( ( 𝜑𝑗𝑋 ) → ( vol ‘ ( 𝑗 / 𝑘 𝐴 [,) 𝑗 / 𝑘 𝐵 ) ) = ( vol ‘ ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) ) )
59 56 58 eqtrd ( ( 𝜑𝑗𝑋 ) → ( vol ‘ ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) = ( vol ‘ ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) ) )
60 59 prodeq2dv ( 𝜑 → ∏ 𝑗𝑋 ( vol ‘ ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) = ∏ 𝑗𝑋 ( vol ‘ ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) ) )
61 45 fveq2d ( 𝑗 = 𝑘 → ( vol ‘ ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) ) = ( vol ‘ ( 𝐴 (,) 𝐵 ) ) )
62 nfcv 𝑘 𝑋
63 nfcv 𝑗 𝑋
64 nfcv 𝑘 vol
65 64 37 nffv 𝑘 ( vol ‘ ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) )
66 nfcv 𝑗 ( vol ‘ ( 𝐴 (,) 𝐵 ) )
67 61 62 63 65 66 cbvprod 𝑗𝑋 ( vol ‘ ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) )
68 67 a1i ( 𝜑 → ∏ 𝑗𝑋 ( vol ‘ ( 𝑗 / 𝑘 𝐴 (,) 𝑗 / 𝑘 𝐵 ) ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) )
69 60 68 eqtrd ( 𝜑 → ∏ 𝑗𝑋 ( vol ‘ ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,) ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) )
70 50 54 69 3eqtrd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 (,) 𝐵 ) ) )