Metamath Proof Explorer


Theorem vonn0ioo2

Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0ioo2.k kφ
vonn0ioo2.x φXFin
vonn0ioo2.n φX
vonn0ioo2.a φkXA
vonn0ioo2.b φkXB
vonn0ioo2.i I=kXAB
Assertion vonn0ioo2 φvolnXI=kXvolAB

Proof

Step Hyp Ref Expression
1 vonn0ioo2.k kφ
2 vonn0ioo2.x φXFin
3 vonn0ioo2.n φX
4 vonn0ioo2.a φkXA
5 vonn0ioo2.b φkXB
6 vonn0ioo2.i I=kXAB
7 6 a1i φI=kXAB
8 simpr φjXjX
9 nfv kjX
10 1 9 nfan kφjX
11 nfcsb1v _kj/kA
12 nfcv _k
13 11 12 nfel kj/kA
14 10 13 nfim kφjXj/kA
15 eleq1w k=jkXjX
16 15 anbi2d k=jφkXφjX
17 csbeq1a k=jA=j/kA
18 17 eleq1d k=jAj/kA
19 16 18 imbi12d k=jφkXAφjXj/kA
20 14 19 4 chvarfv φjXj/kA
21 eqid kXA=kXA
22 21 fvmpts jXj/kAkXAj=j/kA
23 8 20 22 syl2anc φjXkXAj=j/kA
24 nfcsb1v _kj/kB
25 24 12 nfel kj/kB
26 10 25 nfim kφjXj/kB
27 csbeq1a k=jB=j/kB
28 27 eleq1d k=jBj/kB
29 16 28 imbi12d k=jφkXBφjXj/kB
30 26 29 5 chvarfv φjXj/kB
31 eqid kXB=kXB
32 31 fvmpts jXj/kBkXBj=j/kB
33 8 30 32 syl2anc φjXkXBj=j/kB
34 23 33 oveq12d φjXkXAjkXBj=j/kAj/kB
35 34 ixpeq2dva φjXkXAjkXBj=jXj/kAj/kB
36 nfcv _k.
37 11 36 24 nfov _kj/kAj/kB
38 nfcv _jAB
39 17 equcoms j=kA=j/kA
40 39 eqcomd j=kj/kA=A
41 eqidd j=kA=A
42 40 41 eqtrd j=kj/kA=A
43 27 equcoms j=kB=j/kB
44 43 eqcomd j=kj/kB=B
45 42 44 oveq12d j=kj/kAj/kB=AB
46 37 38 45 cbvixp jXj/kAj/kB=kXAB
47 46 a1i φjXj/kAj/kB=kXAB
48 35 47 eqtrd φjXkXAjkXBj=kXAB
49 7 48 eqtr4d φI=jXkXAjkXBj
50 49 fveq2d φvolnXI=volnXjXkXAjkXBj
51 1 4 21 fmptdf φkXA:X
52 1 5 31 fmptdf φkXB:X
53 eqid jXkXAjkXBj=jXkXAjkXBj
54 2 3 51 52 53 vonn0ioo φvolnXjXkXAjkXBj=jXvolkXAjkXBj
55 23 33 oveq12d φjXkXAjkXBj=j/kAj/kB
56 55 fveq2d φjXvolkXAjkXBj=volj/kAj/kB
57 20 30 voliooico φjXvolj/kAj/kB=volj/kAj/kB
58 57 eqcomd φjXvolj/kAj/kB=volj/kAj/kB
59 56 58 eqtrd φjXvolkXAjkXBj=volj/kAj/kB
60 59 prodeq2dv φjXvolkXAjkXBj=jXvolj/kAj/kB
61 45 fveq2d j=kvolj/kAj/kB=volAB
62 nfcv _kX
63 nfcv _jX
64 nfcv _kvol
65 64 37 nffv _kvolj/kAj/kB
66 nfcv _jvolAB
67 61 62 63 65 66 cbvprod jXvolj/kAj/kB=kXvolAB
68 67 a1i φjXvolj/kAj/kB=kXvolAB
69 60 68 eqtrd φjXvolkXAjkXBj=kXvolAB
70 50 54 69 3eqtrd φvolnXI=kXvolAB