Metamath Proof Explorer


Theorem vonn0ioo2

Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0ioo2.k k φ
vonn0ioo2.x φ X Fin
vonn0ioo2.n φ X
vonn0ioo2.a φ k X A
vonn0ioo2.b φ k X B
vonn0ioo2.i I = k X A B
Assertion vonn0ioo2 φ voln X I = k X vol A B

Proof

Step Hyp Ref Expression
1 vonn0ioo2.k k φ
2 vonn0ioo2.x φ X Fin
3 vonn0ioo2.n φ X
4 vonn0ioo2.a φ k X A
5 vonn0ioo2.b φ k X B
6 vonn0ioo2.i I = k X A B
7 6 a1i φ I = k X A B
8 simpr φ j X j X
9 nfv k j X
10 1 9 nfan k φ j X
11 nfcsb1v _ k j / k A
12 nfcv _ k
13 11 12 nfel k j / k A
14 10 13 nfim k φ j X j / k A
15 eleq1w k = j k X j X
16 15 anbi2d k = j φ k X φ j X
17 csbeq1a k = j A = j / k A
18 17 eleq1d k = j A j / k A
19 16 18 imbi12d k = j φ k X A φ j X j / k A
20 14 19 4 chvarfv φ j X j / k A
21 eqid k X A = k X A
22 21 fvmpts j X j / k A k X A j = j / k A
23 8 20 22 syl2anc φ j X k X A j = j / k A
24 nfcsb1v _ k j / k B
25 24 12 nfel k j / k B
26 10 25 nfim k φ j X j / k B
27 csbeq1a k = j B = j / k B
28 27 eleq1d k = j B j / k B
29 16 28 imbi12d k = j φ k X B φ j X j / k B
30 26 29 5 chvarfv φ j X j / k B
31 eqid k X B = k X B
32 31 fvmpts j X j / k B k X B j = j / k B
33 8 30 32 syl2anc φ j X k X B j = j / k B
34 23 33 oveq12d φ j X k X A j k X B j = j / k A j / k B
35 34 ixpeq2dva φ j X k X A j k X B j = j X j / k A j / k B
36 nfcv _ k .
37 11 36 24 nfov _ k j / k A j / k B
38 nfcv _ j A B
39 17 equcoms j = k A = j / k A
40 39 eqcomd j = k j / k A = A
41 eqidd j = k A = A
42 40 41 eqtrd j = k j / k A = A
43 27 equcoms j = k B = j / k B
44 43 eqcomd j = k j / k B = B
45 42 44 oveq12d j = k j / k A j / k B = A B
46 37 38 45 cbvixp j X j / k A j / k B = k X A B
47 46 a1i φ j X j / k A j / k B = k X A B
48 35 47 eqtrd φ j X k X A j k X B j = k X A B
49 7 48 eqtr4d φ I = j X k X A j k X B j
50 49 fveq2d φ voln X I = voln X j X k X A j k X B j
51 1 4 21 fmptdf φ k X A : X
52 1 5 31 fmptdf φ k X B : X
53 eqid j X k X A j k X B j = j X k X A j k X B j
54 2 3 51 52 53 vonn0ioo φ voln X j X k X A j k X B j = j X vol k X A j k X B j
55 23 33 oveq12d φ j X k X A j k X B j = j / k A j / k B
56 55 fveq2d φ j X vol k X A j k X B j = vol j / k A j / k B
57 20 30 voliooico φ j X vol j / k A j / k B = vol j / k A j / k B
58 57 eqcomd φ j X vol j / k A j / k B = vol j / k A j / k B
59 56 58 eqtrd φ j X vol k X A j k X B j = vol j / k A j / k B
60 59 prodeq2dv φ j X vol k X A j k X B j = j X vol j / k A j / k B
61 45 fveq2d j = k vol j / k A j / k B = vol A B
62 nfcv _ k X
63 nfcv _ j X
64 nfcv _ k vol
65 64 37 nffv _ k vol j / k A j / k B
66 nfcv _ j vol A B
67 61 62 63 65 66 cbvprod j X vol j / k A j / k B = k X vol A B
68 67 a1i φ j X vol j / k A j / k B = k X vol A B
69 60 68 eqtrd φ j X vol k X A j k X B j = k X vol A B
70 50 54 69 3eqtrd φ voln X I = k X vol A B