Metamath Proof Explorer


Theorem vonn0ioo

Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0ioo.x φ X Fin
vonn0ioo.n φ X
vonn0ioo.a φ A : X
vonn0ioo.b φ B : X
vonn0ioo.i I = k X A k B k
Assertion vonn0ioo φ voln X I = k X vol A k B k

Proof

Step Hyp Ref Expression
1 vonn0ioo.x φ X Fin
2 vonn0ioo.n φ X
3 vonn0ioo.a φ A : X
4 vonn0ioo.b φ B : X
5 vonn0ioo.i I = k X A k B k
6 fveq2 j = k a j = a k
7 fveq2 j = k b j = b k
8 6 7 oveq12d j = k a j b j = a k b k
9 8 fveq2d j = k vol a j b j = vol a k b k
10 9 cbvprodv j x vol a j b j = k x vol a k b k
11 ifeq2 j x vol a j b j = k x vol a k b k if x = 0 j x vol a j b j = if x = 0 k x vol a k b k
12 10 11 ax-mp if x = 0 j x vol a j b j = if x = 0 k x vol a k b k
13 12 a1i a x b x if x = 0 j x vol a j b j = if x = 0 k x vol a k b k
14 13 mpoeq3ia a x , b x if x = 0 j x vol a j b j = a x , b x if x = 0 k x vol a k b k
15 14 mpteq2i x Fin a x , b x if x = 0 j x vol a j b j = x Fin a x , b x if x = 0 k x vol a k b k
16 1 3 4 5 15 vonioo φ voln X I = A x Fin a x , b x if x = 0 j x vol a j b j X B
17 15 fveq1i x Fin a x , b x if x = 0 j x vol a j b j X = x Fin a x , b x if x = 0 k x vol a k b k X
18 17 oveqi A x Fin a x , b x if x = 0 j x vol a j b j X B = A x Fin a x , b x if x = 0 k x vol a k b k X B
19 18 a1i φ A x Fin a x , b x if x = 0 j x vol a j b j X B = A x Fin a x , b x if x = 0 k x vol a k b k X B
20 16 19 eqtrd φ voln X I = A x Fin a x , b x if x = 0 k x vol a k b k X B
21 eqid x Fin a x , b x if x = 0 k x vol a k b k = x Fin a x , b x if x = 0 k x vol a k b k
22 21 1 2 3 4 hoidmvn0val φ A x Fin a x , b x if x = 0 k x vol a k b k X B = k X vol A k B k
23 20 22 eqtrd φ voln X I = k X vol A k B k