| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonn0ioo.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
vonn0ioo.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 3 |
|
vonn0ioo.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 4 |
|
vonn0ioo.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 5 |
|
vonn0ioo.i |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑎 ‘ 𝑗 ) = ( 𝑎 ‘ 𝑘 ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑏 ‘ 𝑗 ) = ( 𝑏 ‘ 𝑘 ) ) |
| 8 |
6 7
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) = ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) = ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 10 |
9
|
cbvprodv |
⊢ ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) = ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) |
| 11 |
|
ifeq2 |
⊢ ( ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) = ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) → if ( 𝑥 = ∅ , 0 , ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
| 12 |
10 11
|
ax-mp |
⊢ if ( 𝑥 = ∅ , 0 , ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 13 |
12
|
a1i |
⊢ ( ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) ∧ 𝑏 ∈ ( ℝ ↑m 𝑥 ) ) → if ( 𝑥 = ∅ , 0 , ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) ) = if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
| 14 |
13
|
mpoeq3ia |
⊢ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) ) ) = ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) |
| 15 |
14
|
mpteq2i |
⊢ ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 16 |
1 3 4 5 15
|
vonioo |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) ) |
| 17 |
15
|
fveq1i |
⊢ ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) ) ) ) ‘ 𝑋 ) = ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) |
| 18 |
17
|
oveqi |
⊢ ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑗 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑗 ) [,) ( 𝑏 ‘ 𝑗 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) ) |
| 20 |
16 19
|
eqtrd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) ) |
| 21 |
|
eqid |
⊢ ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 22 |
21 1 2 3 4
|
hoidmvn0val |
⊢ ( 𝜑 → ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 23 |
20 22
|
eqtrd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |