Metamath Proof Explorer


Theorem vonsn

Description: The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonsn.1 φ X Fin
vonsn.2 φ A X
Assertion vonsn φ voln X A = 0

Proof

Step Hyp Ref Expression
1 vonsn.1 φ X Fin
2 vonsn.2 φ A X
3 fveq2 X = voln X = voln
4 3 fveq1d X = voln X A = voln A
5 4 adantl φ X = voln X A = voln A
6 0fin Fin
7 6 a1i φ X = Fin
8 2 adantr φ X = A X
9 oveq2 X = X =
10 9 adantl φ X = X =
11 8 10 eleqtrd φ X = A
12 7 11 snvonmbl φ X = A dom voln
13 12 von0val φ X = voln A = 0
14 5 13 eqtrd φ X = voln X A = 0
15 neqne ¬ X = X
16 15 adantl φ ¬ X = X
17 2 rrxsnicc φ k X A k A k = A
18 17 eqcomd φ A = k X A k A k
19 18 fveq2d φ voln X A = voln X k X A k A k
20 19 adantr φ X voln X A = voln X k X A k A k
21 1 adantr φ X X Fin
22 simpr φ X X
23 elmapi A X A : X
24 2 23 syl φ A : X
25 24 adantr φ X A : X
26 eqid k X A k A k = k X A k A k
27 21 22 25 25 26 vonn0icc φ X voln X k X A k A k = k X vol A k A k
28 24 ffvelrnda φ k X A k
29 28 rexrd φ k X A k *
30 iccid A k * A k A k = A k
31 29 30 syl φ k X A k A k = A k
32 31 fveq2d φ k X vol A k A k = vol A k
33 volsn A k vol A k = 0
34 28 33 syl φ k X vol A k = 0
35 32 34 eqtrd φ k X vol A k A k = 0
36 35 prodeq2dv φ k X vol A k A k = k X 0
37 36 adantr φ X k X vol A k A k = k X 0
38 0cnd φ 0
39 fprodconst X Fin 0 k X 0 = 0 X
40 1 38 39 syl2anc φ k X 0 = 0 X
41 40 adantr φ X k X 0 = 0 X
42 hashnncl X Fin X X
43 1 42 syl φ X X
44 43 adantr φ X X X
45 22 44 mpbird φ X X
46 0exp X 0 X = 0
47 45 46 syl φ X 0 X = 0
48 37 41 47 3eqtrd φ X k X vol A k A k = 0
49 20 27 48 3eqtrd φ X voln X A = 0
50 16 49 syldan φ ¬ X = voln X A = 0
51 14 50 pm2.61dan φ voln X A = 0