| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonsn.1 | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | vonsn.2 | ⊢ ( 𝜑  →  𝐴  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑋  =  ∅  →  ( voln ‘ 𝑋 )  =  ( voln ‘ ∅ ) ) | 
						
							| 4 | 3 | fveq1d | ⊢ ( 𝑋  =  ∅  →  ( ( voln ‘ 𝑋 ) ‘ { 𝐴 } )  =  ( ( voln ‘ ∅ ) ‘ { 𝐴 } ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ { 𝐴 } )  =  ( ( voln ‘ ∅ ) ‘ { 𝐴 } ) ) | 
						
							| 6 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∅  ∈  Fin ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝐴  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑋  =  ∅  →  ( ℝ  ↑m  𝑋 )  =  ( ℝ  ↑m  ∅ ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ℝ  ↑m  𝑋 )  =  ( ℝ  ↑m  ∅ ) ) | 
						
							| 11 | 8 10 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝐴  ∈  ( ℝ  ↑m  ∅ ) ) | 
						
							| 12 | 7 11 | snvonmbl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  { 𝐴 }  ∈  dom  ( voln ‘ ∅ ) ) | 
						
							| 13 | 12 | von0val | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ( voln ‘ ∅ ) ‘ { 𝐴 } )  =  0 ) | 
						
							| 14 | 5 13 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ { 𝐴 } )  =  0 ) | 
						
							| 15 |  | neqne | ⊢ ( ¬  𝑋  =  ∅  →  𝑋  ≠  ∅ ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝑋  ≠  ∅ ) | 
						
							| 17 | 2 | rrxsnicc | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) )  =  { 𝐴 } ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( 𝜑  →  { 𝐴 }  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ { 𝐴 } )  =  ( ( voln ‘ 𝑋 ) ‘ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ { 𝐴 } )  =  ( ( voln ‘ 𝑋 ) ‘ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ) | 
						
							| 21 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝑋  ∈  Fin ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝑋  ≠  ∅ ) | 
						
							| 23 |  | elmapi | ⊢ ( 𝐴  ∈  ( ℝ  ↑m  𝑋 )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 24 | 2 23 | syl | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 26 |  | eqid | ⊢ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 27 | 21 22 25 25 26 | vonn0icc | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) ) ) | 
						
							| 28 | 24 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 29 | 28 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 30 |  | iccid | ⊢ ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ*  →  ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) )  =  { ( 𝐴 ‘ 𝑘 ) } ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) )  =  { ( 𝐴 ‘ 𝑘 ) } ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) )  =  ( vol ‘ { ( 𝐴 ‘ 𝑘 ) } ) ) | 
						
							| 33 |  | volsn | ⊢ ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  →  ( vol ‘ { ( 𝐴 ‘ 𝑘 ) } )  =  0 ) | 
						
							| 34 | 28 33 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ { ( 𝐴 ‘ 𝑘 ) } )  =  0 ) | 
						
							| 35 | 32 34 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 36 | 35 | prodeq2dv | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑋 0 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑋 0 ) | 
						
							| 38 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 39 |  | fprodconst | ⊢ ( ( 𝑋  ∈  Fin  ∧  0  ∈  ℂ )  →  ∏ 𝑘  ∈  𝑋 0  =  ( 0 ↑ ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 40 | 1 38 39 | syl2anc | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑋 0  =  ( 0 ↑ ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ∏ 𝑘  ∈  𝑋 0  =  ( 0 ↑ ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 42 |  | hashnncl | ⊢ ( 𝑋  ∈  Fin  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 43 | 1 42 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 45 | 22 44 | mpbird | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 46 |  | 0exp | ⊢ ( ( ♯ ‘ 𝑋 )  ∈  ℕ  →  ( 0 ↑ ( ♯ ‘ 𝑋 ) )  =  0 ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( 0 ↑ ( ♯ ‘ 𝑋 ) )  =  0 ) | 
						
							| 48 | 37 41 47 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐴 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 49 | 20 27 48 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ { 𝐴 } )  =  0 ) | 
						
							| 50 | 16 49 | syldan | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ( ( voln ‘ 𝑋 ) ‘ { 𝐴 } )  =  0 ) | 
						
							| 51 | 14 50 | pm2.61dan | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ { 𝐴 } )  =  0 ) |