Metamath Proof Explorer


Theorem vonn0icc2

Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0icc2.k 𝑘 𝜑
vonn0icc2.x ( 𝜑𝑋 ∈ Fin )
vonn0icc2.n ( 𝜑𝑋 ≠ ∅ )
vonn0icc2.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
vonn0icc2.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
vonn0icc2.i 𝐼 = X 𝑘𝑋 ( 𝐴 [,] 𝐵 )
Assertion vonn0icc2 ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,] 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 vonn0icc2.k 𝑘 𝜑
2 vonn0icc2.x ( 𝜑𝑋 ∈ Fin )
3 vonn0icc2.n ( 𝜑𝑋 ≠ ∅ )
4 vonn0icc2.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
5 vonn0icc2.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ )
6 vonn0icc2.i 𝐼 = X 𝑘𝑋 ( 𝐴 [,] 𝐵 )
7 6 a1i ( 𝜑𝐼 = X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )
8 simpr ( ( 𝜑𝑗𝑋 ) → 𝑗𝑋 )
9 nfv 𝑘 𝑗𝑋
10 1 9 nfan 𝑘 ( 𝜑𝑗𝑋 )
11 nfcsb1v 𝑘 𝑗 / 𝑘 𝐴
12 nfcv 𝑘
13 11 12 nfel 𝑘 𝑗 / 𝑘 𝐴 ∈ ℝ
14 10 13 nfim 𝑘 ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐴 ∈ ℝ )
15 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑋𝑗𝑋 ) )
16 15 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑋 ) ↔ ( 𝜑𝑗𝑋 ) ) )
17 csbeq1a ( 𝑘 = 𝑗𝐴 = 𝑗 / 𝑘 𝐴 )
18 17 eleq1d ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℝ ↔ 𝑗 / 𝑘 𝐴 ∈ ℝ ) )
19 16 18 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ ) ↔ ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐴 ∈ ℝ ) ) )
20 14 19 4 chvarfv ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐴 ∈ ℝ )
21 eqid ( 𝑘𝑋𝐴 ) = ( 𝑘𝑋𝐴 )
22 21 fvmpts ( ( 𝑗𝑋 𝑗 / 𝑘 𝐴 ∈ ℝ ) → ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
23 8 20 22 syl2anc ( ( 𝜑𝑗𝑋 ) → ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
24 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
25 24 12 nfel 𝑘 𝑗 / 𝑘 𝐵 ∈ ℝ
26 10 25 nfim 𝑘 ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ )
27 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
28 27 eleq1d ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℝ ↔ 𝑗 / 𝑘 𝐵 ∈ ℝ ) )
29 16 28 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ ) ↔ ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ ) ) )
30 26 29 5 chvarfv ( ( 𝜑𝑗𝑋 ) → 𝑗 / 𝑘 𝐵 ∈ ℝ )
31 eqid ( 𝑘𝑋𝐵 ) = ( 𝑘𝑋𝐵 )
32 31 fvmpts ( ( 𝑗𝑋 𝑗 / 𝑘 𝐵 ∈ ℝ ) → ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
33 8 30 32 syl2anc ( ( 𝜑𝑗𝑋 ) → ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
34 23 33 oveq12d ( ( 𝜑𝑗𝑋 ) → ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) )
35 34 ixpeq2dva ( 𝜑X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) )
36 nfcv 𝑘 [,]
37 11 36 24 nfov 𝑘 ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 )
38 nfcv 𝑗 ( 𝐴 [,] 𝐵 )
39 17 equcoms ( 𝑗 = 𝑘𝐴 = 𝑗 / 𝑘 𝐴 )
40 39 eqcomd ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐴 = 𝐴 )
41 eqidd ( 𝑗 = 𝑘𝐴 = 𝐴 )
42 40 41 eqtrd ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐴 = 𝐴 )
43 27 equcoms ( 𝑗 = 𝑘𝐵 = 𝑗 / 𝑘 𝐵 )
44 43 eqcomd ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐵 = 𝐵 )
45 42 44 oveq12d ( 𝑗 = 𝑘 → ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) = ( 𝐴 [,] 𝐵 ) )
46 37 38 45 cbvixp X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) = X 𝑘𝑋 ( 𝐴 [,] 𝐵 )
47 46 a1i ( 𝜑X 𝑗𝑋 ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) = X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )
48 35 47 eqtrd ( 𝜑X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = X 𝑘𝑋 ( 𝐴 [,] 𝐵 ) )
49 7 48 eqtr4d ( 𝜑𝐼 = X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) )
50 49 fveq2d ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) )
51 1 4 21 fmptdf ( 𝜑 → ( 𝑘𝑋𝐴 ) : 𝑋 ⟶ ℝ )
52 1 5 31 fmptdf ( 𝜑 → ( 𝑘𝑋𝐵 ) : 𝑋 ⟶ ℝ )
53 eqid X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) = X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) )
54 2 3 51 52 53 vonn0icc ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ X 𝑗𝑋 ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) = ∏ 𝑗𝑋 ( vol ‘ ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) )
55 34 fveq2d ( ( 𝜑𝑗𝑋 ) → ( vol ‘ ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) = ( vol ‘ ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) ) )
56 55 prodeq2dv ( 𝜑 → ∏ 𝑗𝑋 ( vol ‘ ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) = ∏ 𝑗𝑋 ( vol ‘ ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) ) )
57 45 fveq2d ( 𝑗 = 𝑘 → ( vol ‘ ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) ) = ( vol ‘ ( 𝐴 [,] 𝐵 ) ) )
58 nfcv 𝑘 𝑋
59 nfcv 𝑗 𝑋
60 nfcv 𝑘 vol
61 60 37 nffv 𝑘 ( vol ‘ ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) )
62 nfcv 𝑗 ( vol ‘ ( 𝐴 [,] 𝐵 ) )
63 57 58 59 61 62 cbvprod 𝑗𝑋 ( vol ‘ ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,] 𝐵 ) )
64 63 a1i ( 𝜑 → ∏ 𝑗𝑋 ( vol ‘ ( 𝑗 / 𝑘 𝐴 [,] 𝑗 / 𝑘 𝐵 ) ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,] 𝐵 ) ) )
65 56 64 eqtrd ( 𝜑 → ∏ 𝑗𝑋 ( vol ‘ ( ( ( 𝑘𝑋𝐴 ) ‘ 𝑗 ) [,] ( ( 𝑘𝑋𝐵 ) ‘ 𝑗 ) ) ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,] 𝐵 ) ) )
66 50 54 65 3eqtrd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( vol ‘ ( 𝐴 [,] 𝐵 ) ) )