| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonn0icc2.k |  |-  F/ k ph | 
						
							| 2 |  | vonn0icc2.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | vonn0icc2.n |  |-  ( ph -> X =/= (/) ) | 
						
							| 4 |  | vonn0icc2.a |  |-  ( ( ph /\ k e. X ) -> A e. RR ) | 
						
							| 5 |  | vonn0icc2.b |  |-  ( ( ph /\ k e. X ) -> B e. RR ) | 
						
							| 6 |  | vonn0icc2.i |  |-  I = X_ k e. X ( A [,] B ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> I = X_ k e. X ( A [,] B ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ j e. X ) -> j e. X ) | 
						
							| 9 |  | nfv |  |-  F/ k j e. X | 
						
							| 10 | 1 9 | nfan |  |-  F/ k ( ph /\ j e. X ) | 
						
							| 11 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ A | 
						
							| 12 |  | nfcv |  |-  F/_ k RR | 
						
							| 13 | 11 12 | nfel |  |-  F/ k [_ j / k ]_ A e. RR | 
						
							| 14 | 10 13 | nfim |  |-  F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) | 
						
							| 15 |  | eleq1w |  |-  ( k = j -> ( k e. X <-> j e. X ) ) | 
						
							| 16 | 15 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. X ) <-> ( ph /\ j e. X ) ) ) | 
						
							| 17 |  | csbeq1a |  |-  ( k = j -> A = [_ j / k ]_ A ) | 
						
							| 18 | 17 | eleq1d |  |-  ( k = j -> ( A e. RR <-> [_ j / k ]_ A e. RR ) ) | 
						
							| 19 | 16 18 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. X ) -> A e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) ) ) | 
						
							| 20 | 14 19 4 | chvarfv |  |-  ( ( ph /\ j e. X ) -> [_ j / k ]_ A e. RR ) | 
						
							| 21 |  | eqid |  |-  ( k e. X |-> A ) = ( k e. X |-> A ) | 
						
							| 22 | 21 | fvmpts |  |-  ( ( j e. X /\ [_ j / k ]_ A e. RR ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 23 | 8 20 22 | syl2anc |  |-  ( ( ph /\ j e. X ) -> ( ( k e. X |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 24 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ B | 
						
							| 25 | 24 12 | nfel |  |-  F/ k [_ j / k ]_ B e. RR | 
						
							| 26 | 10 25 | nfim |  |-  F/ k ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) | 
						
							| 27 |  | csbeq1a |  |-  ( k = j -> B = [_ j / k ]_ B ) | 
						
							| 28 | 27 | eleq1d |  |-  ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) | 
						
							| 29 | 16 28 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. X ) -> B e. RR ) <-> ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) ) ) | 
						
							| 30 | 26 29 5 | chvarfv |  |-  ( ( ph /\ j e. X ) -> [_ j / k ]_ B e. RR ) | 
						
							| 31 |  | eqid |  |-  ( k e. X |-> B ) = ( k e. X |-> B ) | 
						
							| 32 | 31 | fvmpts |  |-  ( ( j e. X /\ [_ j / k ]_ B e. RR ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) | 
						
							| 33 | 8 30 32 | syl2anc |  |-  ( ( ph /\ j e. X ) -> ( ( k e. X |-> B ) ` j ) = [_ j / k ]_ B ) | 
						
							| 34 | 23 33 | oveq12d |  |-  ( ( ph /\ j e. X ) -> ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) = ( [_ j / k ]_ A [,] [_ j / k ]_ B ) ) | 
						
							| 35 | 34 | ixpeq2dva |  |-  ( ph -> X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( [_ j / k ]_ A [,] [_ j / k ]_ B ) ) | 
						
							| 36 |  | nfcv |  |-  F/_ k [,] | 
						
							| 37 | 11 36 24 | nfov |  |-  F/_ k ( [_ j / k ]_ A [,] [_ j / k ]_ B ) | 
						
							| 38 |  | nfcv |  |-  F/_ j ( A [,] B ) | 
						
							| 39 | 17 | equcoms |  |-  ( j = k -> A = [_ j / k ]_ A ) | 
						
							| 40 | 39 | eqcomd |  |-  ( j = k -> [_ j / k ]_ A = A ) | 
						
							| 41 |  | eqidd |  |-  ( j = k -> A = A ) | 
						
							| 42 | 40 41 | eqtrd |  |-  ( j = k -> [_ j / k ]_ A = A ) | 
						
							| 43 | 27 | equcoms |  |-  ( j = k -> B = [_ j / k ]_ B ) | 
						
							| 44 | 43 | eqcomd |  |-  ( j = k -> [_ j / k ]_ B = B ) | 
						
							| 45 | 42 44 | oveq12d |  |-  ( j = k -> ( [_ j / k ]_ A [,] [_ j / k ]_ B ) = ( A [,] B ) ) | 
						
							| 46 | 37 38 45 | cbvixp |  |-  X_ j e. X ( [_ j / k ]_ A [,] [_ j / k ]_ B ) = X_ k e. X ( A [,] B ) | 
						
							| 47 | 46 | a1i |  |-  ( ph -> X_ j e. X ( [_ j / k ]_ A [,] [_ j / k ]_ B ) = X_ k e. X ( A [,] B ) ) | 
						
							| 48 | 35 47 | eqtrd |  |-  ( ph -> X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) = X_ k e. X ( A [,] B ) ) | 
						
							| 49 | 7 48 | eqtr4d |  |-  ( ph -> I = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) ) | 
						
							| 50 | 49 | fveq2d |  |-  ( ph -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) ) ) | 
						
							| 51 | 1 4 21 | fmptdf |  |-  ( ph -> ( k e. X |-> A ) : X --> RR ) | 
						
							| 52 | 1 5 31 | fmptdf |  |-  ( ph -> ( k e. X |-> B ) : X --> RR ) | 
						
							| 53 |  | eqid |  |-  X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) = X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) | 
						
							| 54 | 2 3 51 52 53 | vonn0icc |  |-  ( ph -> ( ( voln ` X ) ` X_ j e. X ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) ) = prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) ) ) | 
						
							| 55 | 34 | fveq2d |  |-  ( ( ph /\ j e. X ) -> ( vol ` ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) ) = ( vol ` ( [_ j / k ]_ A [,] [_ j / k ]_ B ) ) ) | 
						
							| 56 | 55 | prodeq2dv |  |-  ( ph -> prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) ) = prod_ j e. X ( vol ` ( [_ j / k ]_ A [,] [_ j / k ]_ B ) ) ) | 
						
							| 57 | 45 | fveq2d |  |-  ( j = k -> ( vol ` ( [_ j / k ]_ A [,] [_ j / k ]_ B ) ) = ( vol ` ( A [,] B ) ) ) | 
						
							| 58 |  | nfcv |  |-  F/_ k X | 
						
							| 59 |  | nfcv |  |-  F/_ j X | 
						
							| 60 |  | nfcv |  |-  F/_ k vol | 
						
							| 61 | 60 37 | nffv |  |-  F/_ k ( vol ` ( [_ j / k ]_ A [,] [_ j / k ]_ B ) ) | 
						
							| 62 |  | nfcv |  |-  F/_ j ( vol ` ( A [,] B ) ) | 
						
							| 63 | 57 58 59 61 62 | cbvprod |  |-  prod_ j e. X ( vol ` ( [_ j / k ]_ A [,] [_ j / k ]_ B ) ) = prod_ k e. X ( vol ` ( A [,] B ) ) | 
						
							| 64 | 63 | a1i |  |-  ( ph -> prod_ j e. X ( vol ` ( [_ j / k ]_ A [,] [_ j / k ]_ B ) ) = prod_ k e. X ( vol ` ( A [,] B ) ) ) | 
						
							| 65 | 56 64 | eqtrd |  |-  ( ph -> prod_ j e. X ( vol ` ( ( ( k e. X |-> A ) ` j ) [,] ( ( k e. X |-> B ) ` j ) ) ) = prod_ k e. X ( vol ` ( A [,] B ) ) ) | 
						
							| 66 | 50 54 65 | 3eqtrd |  |-  ( ph -> ( ( voln ` X ) ` I ) = prod_ k e. X ( vol ` ( A [,] B ) ) ) |