| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonct.1 |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | vonct.2 |  |-  ( ph -> A C_ ( RR ^m X ) ) | 
						
							| 3 |  | vonct.3 |  |-  ( ph -> A ~<_ _om ) | 
						
							| 4 |  | iunid |  |-  U_ x e. A { x } = A | 
						
							| 5 | 4 | eqcomi |  |-  A = U_ x e. A { x } | 
						
							| 6 | 5 | fveq2i |  |-  ( ( voln ` X ) ` A ) = ( ( voln ` X ) ` U_ x e. A { x } ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> ( ( voln ` X ) ` A ) = ( ( voln ` X ) ` U_ x e. A { x } ) ) | 
						
							| 8 |  | nfv |  |-  F/ x ph | 
						
							| 9 | 1 | vonmea |  |-  ( ph -> ( voln ` X ) e. Meas ) | 
						
							| 10 |  | eqid |  |-  dom ( voln ` X ) = dom ( voln ` X ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ x e. A ) -> X e. Fin ) | 
						
							| 12 | 2 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. ( RR ^m X ) ) | 
						
							| 13 | 11 12 | snvonmbl |  |-  ( ( ph /\ x e. A ) -> { x } e. dom ( voln ` X ) ) | 
						
							| 14 |  | sndisj |  |-  Disj_ x e. A { x } | 
						
							| 15 | 14 | a1i |  |-  ( ph -> Disj_ x e. A { x } ) | 
						
							| 16 | 8 9 10 13 3 15 | meadjiun |  |-  ( ph -> ( ( voln ` X ) ` U_ x e. A { x } ) = ( sum^ ` ( x e. A |-> ( ( voln ` X ) ` { x } ) ) ) ) | 
						
							| 17 | 11 12 | vonsn |  |-  ( ( ph /\ x e. A ) -> ( ( voln ` X ) ` { x } ) = 0 ) | 
						
							| 18 | 17 | mpteq2dva |  |-  ( ph -> ( x e. A |-> ( ( voln ` X ) ` { x } ) ) = ( x e. A |-> 0 ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ph -> ( sum^ ` ( x e. A |-> ( ( voln ` X ) ` { x } ) ) ) = ( sum^ ` ( x e. A |-> 0 ) ) ) | 
						
							| 20 | 9 10 | dmmeasal |  |-  ( ph -> dom ( voln ` X ) e. SAlg ) | 
						
							| 21 | 20 3 13 | saliuncl |  |-  ( ph -> U_ x e. A { x } e. dom ( voln ` X ) ) | 
						
							| 22 | 4 21 | eqeltrrid |  |-  ( ph -> A e. dom ( voln ` X ) ) | 
						
							| 23 | 8 22 | sge0z |  |-  ( ph -> ( sum^ ` ( x e. A |-> 0 ) ) = 0 ) | 
						
							| 24 | 19 23 | eqtrd |  |-  ( ph -> ( sum^ ` ( x e. A |-> ( ( voln ` X ) ` { x } ) ) ) = 0 ) | 
						
							| 25 | 7 16 24 | 3eqtrd |  |-  ( ph -> ( ( voln ` X ) ` A ) = 0 ) |