Step |
Hyp |
Ref |
Expression |
1 |
|
vonct.1 |
|- ( ph -> X e. Fin ) |
2 |
|
vonct.2 |
|- ( ph -> A C_ ( RR ^m X ) ) |
3 |
|
vonct.3 |
|- ( ph -> A ~<_ _om ) |
4 |
|
iunid |
|- U_ x e. A { x } = A |
5 |
4
|
eqcomi |
|- A = U_ x e. A { x } |
6 |
5
|
fveq2i |
|- ( ( voln ` X ) ` A ) = ( ( voln ` X ) ` U_ x e. A { x } ) |
7 |
6
|
a1i |
|- ( ph -> ( ( voln ` X ) ` A ) = ( ( voln ` X ) ` U_ x e. A { x } ) ) |
8 |
|
nfv |
|- F/ x ph |
9 |
1
|
vonmea |
|- ( ph -> ( voln ` X ) e. Meas ) |
10 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
11 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> X e. Fin ) |
12 |
2
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. ( RR ^m X ) ) |
13 |
11 12
|
snvonmbl |
|- ( ( ph /\ x e. A ) -> { x } e. dom ( voln ` X ) ) |
14 |
|
sndisj |
|- Disj_ x e. A { x } |
15 |
14
|
a1i |
|- ( ph -> Disj_ x e. A { x } ) |
16 |
8 9 10 13 3 15
|
meadjiun |
|- ( ph -> ( ( voln ` X ) ` U_ x e. A { x } ) = ( sum^ ` ( x e. A |-> ( ( voln ` X ) ` { x } ) ) ) ) |
17 |
11 12
|
vonsn |
|- ( ( ph /\ x e. A ) -> ( ( voln ` X ) ` { x } ) = 0 ) |
18 |
17
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( voln ` X ) ` { x } ) ) = ( x e. A |-> 0 ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( sum^ ` ( x e. A |-> ( ( voln ` X ) ` { x } ) ) ) = ( sum^ ` ( x e. A |-> 0 ) ) ) |
20 |
9 10
|
dmmeasal |
|- ( ph -> dom ( voln ` X ) e. SAlg ) |
21 |
20 3 13
|
saliuncl |
|- ( ph -> U_ x e. A { x } e. dom ( voln ` X ) ) |
22 |
4 21
|
eqeltrrid |
|- ( ph -> A e. dom ( voln ` X ) ) |
23 |
8 22
|
sge0z |
|- ( ph -> ( sum^ ` ( x e. A |-> 0 ) ) = 0 ) |
24 |
19 23
|
eqtrd |
|- ( ph -> ( sum^ ` ( x e. A |-> ( ( voln ` X ) ` { x } ) ) ) = 0 ) |
25 |
7 16 24
|
3eqtrd |
|- ( ph -> ( ( voln ` X ) ` A ) = 0 ) |