Metamath Proof Explorer


Theorem vonct

Description: The n-dimensional Lebesgue measure of any countable set is zero. This is the second statement in Proposition 115G (e) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonct.1
|- ( ph -> X e. Fin )
vonct.2
|- ( ph -> A C_ ( RR ^m X ) )
vonct.3
|- ( ph -> A ~<_ _om )
Assertion vonct
|- ( ph -> ( ( voln ` X ) ` A ) = 0 )

Proof

Step Hyp Ref Expression
1 vonct.1
 |-  ( ph -> X e. Fin )
2 vonct.2
 |-  ( ph -> A C_ ( RR ^m X ) )
3 vonct.3
 |-  ( ph -> A ~<_ _om )
4 iunid
 |-  U_ x e. A { x } = A
5 4 eqcomi
 |-  A = U_ x e. A { x }
6 5 fveq2i
 |-  ( ( voln ` X ) ` A ) = ( ( voln ` X ) ` U_ x e. A { x } )
7 6 a1i
 |-  ( ph -> ( ( voln ` X ) ` A ) = ( ( voln ` X ) ` U_ x e. A { x } ) )
8 nfv
 |-  F/ x ph
9 1 vonmea
 |-  ( ph -> ( voln ` X ) e. Meas )
10 eqid
 |-  dom ( voln ` X ) = dom ( voln ` X )
11 1 adantr
 |-  ( ( ph /\ x e. A ) -> X e. Fin )
12 2 sselda
 |-  ( ( ph /\ x e. A ) -> x e. ( RR ^m X ) )
13 11 12 snvonmbl
 |-  ( ( ph /\ x e. A ) -> { x } e. dom ( voln ` X ) )
14 sndisj
 |-  Disj_ x e. A { x }
15 14 a1i
 |-  ( ph -> Disj_ x e. A { x } )
16 8 9 10 13 3 15 meadjiun
 |-  ( ph -> ( ( voln ` X ) ` U_ x e. A { x } ) = ( sum^ ` ( x e. A |-> ( ( voln ` X ) ` { x } ) ) ) )
17 11 12 vonsn
 |-  ( ( ph /\ x e. A ) -> ( ( voln ` X ) ` { x } ) = 0 )
18 17 mpteq2dva
 |-  ( ph -> ( x e. A |-> ( ( voln ` X ) ` { x } ) ) = ( x e. A |-> 0 ) )
19 18 fveq2d
 |-  ( ph -> ( sum^ ` ( x e. A |-> ( ( voln ` X ) ` { x } ) ) ) = ( sum^ ` ( x e. A |-> 0 ) ) )
20 9 10 dmmeasal
 |-  ( ph -> dom ( voln ` X ) e. SAlg )
21 20 3 13 saliuncl
 |-  ( ph -> U_ x e. A { x } e. dom ( voln ` X ) )
22 4 21 eqeltrrid
 |-  ( ph -> A e. dom ( voln ` X ) )
23 8 22 sge0z
 |-  ( ph -> ( sum^ ` ( x e. A |-> 0 ) ) = 0 )
24 19 23 eqtrd
 |-  ( ph -> ( sum^ ` ( x e. A |-> ( ( voln ` X ) ` { x } ) ) ) = 0 )
25 7 16 24 3eqtrd
 |-  ( ph -> ( ( voln ` X ) ` A ) = 0 )