Metamath Proof Explorer


Theorem vonct

Description: The n-dimensional Lebesgue measure of any countable set is zero. This is the second statement in Proposition 115G (e) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonct.1 φ X Fin
vonct.2 φ A X
vonct.3 φ A ω
Assertion vonct φ voln X A = 0

Proof

Step Hyp Ref Expression
1 vonct.1 φ X Fin
2 vonct.2 φ A X
3 vonct.3 φ A ω
4 iunid x A x = A
5 4 eqcomi A = x A x
6 5 fveq2i voln X A = voln X x A x
7 6 a1i φ voln X A = voln X x A x
8 nfv x φ
9 1 vonmea φ voln X Meas
10 eqid dom voln X = dom voln X
11 1 adantr φ x A X Fin
12 2 sselda φ x A x X
13 11 12 snvonmbl φ x A x dom voln X
14 sndisj Disj x A x
15 14 a1i φ Disj x A x
16 8 9 10 13 3 15 meadjiun φ voln X x A x = sum^ x A voln X x
17 11 12 vonsn φ x A voln X x = 0
18 17 mpteq2dva φ x A voln X x = x A 0
19 18 fveq2d φ sum^ x A voln X x = sum^ x A 0
20 9 10 dmmeasal φ dom voln X SAlg
21 20 3 13 saliuncl φ x A x dom voln X
22 4 21 eqeltrrid φ A dom voln X
23 8 22 sge0z φ sum^ x A 0 = 0
24 19 23 eqtrd φ sum^ x A voln X x = 0
25 7 16 24 3eqtrd φ voln X A = 0