Metamath Proof Explorer


Theorem vonct

Description: The n-dimensional Lebesgue measure of any countable set is zero. This is the second statement in Proposition 115G (e) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonct.1 ( 𝜑𝑋 ∈ Fin )
vonct.2 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
vonct.3 ( 𝜑𝐴 ≼ ω )
Assertion vonct ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 vonct.1 ( 𝜑𝑋 ∈ Fin )
2 vonct.2 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
3 vonct.3 ( 𝜑𝐴 ≼ ω )
4 iunid 𝑥𝐴 { 𝑥 } = 𝐴
5 4 eqcomi 𝐴 = 𝑥𝐴 { 𝑥 }
6 5 fveq2i ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln ‘ 𝑋 ) ‘ 𝑥𝐴 { 𝑥 } )
7 6 a1i ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln ‘ 𝑋 ) ‘ 𝑥𝐴 { 𝑥 } ) )
8 nfv 𝑥 𝜑
9 1 vonmea ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas )
10 eqid dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 )
11 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝑋 ∈ Fin )
12 2 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ( ℝ ↑m 𝑋 ) )
13 11 12 snvonmbl ( ( 𝜑𝑥𝐴 ) → { 𝑥 } ∈ dom ( voln ‘ 𝑋 ) )
14 sndisj Disj 𝑥𝐴 { 𝑥 }
15 14 a1i ( 𝜑Disj 𝑥𝐴 { 𝑥 } )
16 8 9 10 13 3 15 meadjiun ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝑥𝐴 { 𝑥 } ) = ( Σ^ ‘ ( 𝑥𝐴 ↦ ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) ) ) )
17 11 12 vonsn ( ( 𝜑𝑥𝐴 ) → ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) = 0 )
18 17 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) ) = ( 𝑥𝐴 ↦ 0 ) )
19 18 fveq2d ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴 ↦ ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) ) ) = ( Σ^ ‘ ( 𝑥𝐴 ↦ 0 ) ) )
20 9 10 dmmeasal ( 𝜑 → dom ( voln ‘ 𝑋 ) ∈ SAlg )
21 20 3 13 saliuncl ( 𝜑 𝑥𝐴 { 𝑥 } ∈ dom ( voln ‘ 𝑋 ) )
22 4 21 eqeltrrid ( 𝜑𝐴 ∈ dom ( voln ‘ 𝑋 ) )
23 8 22 sge0z ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴 ↦ 0 ) ) = 0 )
24 19 23 eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑥𝐴 ↦ ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) ) ) = 0 )
25 7 16 24 3eqtrd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = 0 )