Step |
Hyp |
Ref |
Expression |
1 |
|
vonct.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
vonct.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) |
3 |
|
vonct.3 |
⊢ ( 𝜑 → 𝐴 ≼ ω ) |
4 |
|
iunid |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 |
5 |
4
|
eqcomi |
⊢ 𝐴 = ∪ 𝑥 ∈ 𝐴 { 𝑥 } |
6 |
5
|
fveq2i |
⊢ ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln ‘ 𝑋 ) ‘ ∪ 𝑥 ∈ 𝐴 { 𝑥 } ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln ‘ 𝑋 ) ‘ ∪ 𝑥 ∈ 𝐴 { 𝑥 } ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
9 |
1
|
vonmea |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas ) |
10 |
|
eqid |
⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ∈ Fin ) |
12 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( ℝ ↑m 𝑋 ) ) |
13 |
11 12
|
snvonmbl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ∈ dom ( voln ‘ 𝑋 ) ) |
14 |
|
sndisj |
⊢ Disj 𝑥 ∈ 𝐴 { 𝑥 } |
15 |
14
|
a1i |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 { 𝑥 } ) |
16 |
8 9 10 13 3 15
|
meadjiun |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ∪ 𝑥 ∈ 𝐴 { 𝑥 } ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) ) ) ) |
17 |
11 12
|
vonsn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) = 0 ) |
18 |
17
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) ) ) = ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 0 ) ) ) |
20 |
9 10
|
dmmeasal |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) ∈ SAlg ) |
21 |
20 3 13
|
saliuncl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 { 𝑥 } ∈ dom ( voln ‘ 𝑋 ) ) |
22 |
4 21
|
eqeltrrid |
⊢ ( 𝜑 → 𝐴 ∈ dom ( voln ‘ 𝑋 ) ) |
23 |
8 22
|
sge0z |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
24 |
19 23
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑥 ∈ 𝐴 ↦ ( ( voln ‘ 𝑋 ) ‘ { 𝑥 } ) ) ) = 0 ) |
25 |
7 16 24
|
3eqtrd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = 0 ) |