| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonsn.1 |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | vonsn.2 |  |-  ( ph -> A e. ( RR ^m X ) ) | 
						
							| 3 |  | fveq2 |  |-  ( X = (/) -> ( voln ` X ) = ( voln ` (/) ) ) | 
						
							| 4 | 3 | fveq1d |  |-  ( X = (/) -> ( ( voln ` X ) ` { A } ) = ( ( voln ` (/) ) ` { A } ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` { A } ) = ( ( voln ` (/) ) ` { A } ) ) | 
						
							| 6 |  | 0fi |  |-  (/) e. Fin | 
						
							| 7 | 6 | a1i |  |-  ( ( ph /\ X = (/) ) -> (/) e. Fin ) | 
						
							| 8 | 2 | adantr |  |-  ( ( ph /\ X = (/) ) -> A e. ( RR ^m X ) ) | 
						
							| 9 |  | oveq2 |  |-  ( X = (/) -> ( RR ^m X ) = ( RR ^m (/) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( RR ^m X ) = ( RR ^m (/) ) ) | 
						
							| 11 | 8 10 | eleqtrd |  |-  ( ( ph /\ X = (/) ) -> A e. ( RR ^m (/) ) ) | 
						
							| 12 | 7 11 | snvonmbl |  |-  ( ( ph /\ X = (/) ) -> { A } e. dom ( voln ` (/) ) ) | 
						
							| 13 | 12 | von0val |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` (/) ) ` { A } ) = 0 ) | 
						
							| 14 | 5 13 | eqtrd |  |-  ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` { A } ) = 0 ) | 
						
							| 15 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ -. X = (/) ) -> X =/= (/) ) | 
						
							| 17 | 2 | rrxsnicc |  |-  ( ph -> X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) = { A } ) | 
						
							| 18 | 17 | eqcomd |  |-  ( ph -> { A } = X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ph -> ( ( voln ` X ) ` { A } ) = ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` { A } ) = ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) ) | 
						
							| 21 | 1 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> X e. Fin ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ X =/= (/) ) -> X =/= (/) ) | 
						
							| 23 |  | elmapi |  |-  ( A e. ( RR ^m X ) -> A : X --> RR ) | 
						
							| 24 | 2 23 | syl |  |-  ( ph -> A : X --> RR ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> A : X --> RR ) | 
						
							| 26 |  | eqid |  |-  X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) = X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) | 
						
							| 27 | 21 22 25 25 26 | vonn0icc |  |-  ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,] ( A ` k ) ) ) ) | 
						
							| 28 | 24 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 29 | 28 | rexrd |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) | 
						
							| 30 |  | iccid |  |-  ( ( A ` k ) e. RR* -> ( ( A ` k ) [,] ( A ` k ) ) = { ( A ` k ) } ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( ph /\ k e. X ) -> ( ( A ` k ) [,] ( A ` k ) ) = { ( A ` k ) } ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,] ( A ` k ) ) ) = ( vol ` { ( A ` k ) } ) ) | 
						
							| 33 |  | volsn |  |-  ( ( A ` k ) e. RR -> ( vol ` { ( A ` k ) } ) = 0 ) | 
						
							| 34 | 28 33 | syl |  |-  ( ( ph /\ k e. X ) -> ( vol ` { ( A ` k ) } ) = 0 ) | 
						
							| 35 | 32 34 | eqtrd |  |-  ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,] ( A ` k ) ) ) = 0 ) | 
						
							| 36 | 35 | prodeq2dv |  |-  ( ph -> prod_ k e. X ( vol ` ( ( A ` k ) [,] ( A ` k ) ) ) = prod_ k e. X 0 ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,] ( A ` k ) ) ) = prod_ k e. X 0 ) | 
						
							| 38 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 39 |  | fprodconst |  |-  ( ( X e. Fin /\ 0 e. CC ) -> prod_ k e. X 0 = ( 0 ^ ( # ` X ) ) ) | 
						
							| 40 | 1 38 39 | syl2anc |  |-  ( ph -> prod_ k e. X 0 = ( 0 ^ ( # ` X ) ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> prod_ k e. X 0 = ( 0 ^ ( # ` X ) ) ) | 
						
							| 42 |  | hashnncl |  |-  ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 43 | 1 42 | syl |  |-  ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 45 | 22 44 | mpbird |  |-  ( ( ph /\ X =/= (/) ) -> ( # ` X ) e. NN ) | 
						
							| 46 |  | 0exp |  |-  ( ( # ` X ) e. NN -> ( 0 ^ ( # ` X ) ) = 0 ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( ph /\ X =/= (/) ) -> ( 0 ^ ( # ` X ) ) = 0 ) | 
						
							| 48 | 37 41 47 | 3eqtrd |  |-  ( ( ph /\ X =/= (/) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,] ( A ` k ) ) ) = 0 ) | 
						
							| 49 | 20 27 48 | 3eqtrd |  |-  ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` { A } ) = 0 ) | 
						
							| 50 | 16 49 | syldan |  |-  ( ( ph /\ -. X = (/) ) -> ( ( voln ` X ) ` { A } ) = 0 ) | 
						
							| 51 | 14 50 | pm2.61dan |  |-  ( ph -> ( ( voln ` X ) ` { A } ) = 0 ) |