Metamath Proof Explorer


Theorem vonn0icc2

Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0icc2.k k φ
vonn0icc2.x φ X Fin
vonn0icc2.n φ X
vonn0icc2.a φ k X A
vonn0icc2.b φ k X B
vonn0icc2.i I = k X A B
Assertion vonn0icc2 φ voln X I = k X vol A B

Proof

Step Hyp Ref Expression
1 vonn0icc2.k k φ
2 vonn0icc2.x φ X Fin
3 vonn0icc2.n φ X
4 vonn0icc2.a φ k X A
5 vonn0icc2.b φ k X B
6 vonn0icc2.i I = k X A B
7 6 a1i φ I = k X A B
8 simpr φ j X j X
9 nfv k j X
10 1 9 nfan k φ j X
11 nfcsb1v _ k j / k A
12 nfcv _ k
13 11 12 nfel k j / k A
14 10 13 nfim k φ j X j / k A
15 eleq1w k = j k X j X
16 15 anbi2d k = j φ k X φ j X
17 csbeq1a k = j A = j / k A
18 17 eleq1d k = j A j / k A
19 16 18 imbi12d k = j φ k X A φ j X j / k A
20 14 19 4 chvarfv φ j X j / k A
21 eqid k X A = k X A
22 21 fvmpts j X j / k A k X A j = j / k A
23 8 20 22 syl2anc φ j X k X A j = j / k A
24 nfcsb1v _ k j / k B
25 24 12 nfel k j / k B
26 10 25 nfim k φ j X j / k B
27 csbeq1a k = j B = j / k B
28 27 eleq1d k = j B j / k B
29 16 28 imbi12d k = j φ k X B φ j X j / k B
30 26 29 5 chvarfv φ j X j / k B
31 eqid k X B = k X B
32 31 fvmpts j X j / k B k X B j = j / k B
33 8 30 32 syl2anc φ j X k X B j = j / k B
34 23 33 oveq12d φ j X k X A j k X B j = j / k A j / k B
35 34 ixpeq2dva φ j X k X A j k X B j = j X j / k A j / k B
36 nfcv _ k .
37 11 36 24 nfov _ k j / k A j / k B
38 nfcv _ j A B
39 17 equcoms j = k A = j / k A
40 39 eqcomd j = k j / k A = A
41 eqidd j = k A = A
42 40 41 eqtrd j = k j / k A = A
43 27 equcoms j = k B = j / k B
44 43 eqcomd j = k j / k B = B
45 42 44 oveq12d j = k j / k A j / k B = A B
46 37 38 45 cbvixp j X j / k A j / k B = k X A B
47 46 a1i φ j X j / k A j / k B = k X A B
48 35 47 eqtrd φ j X k X A j k X B j = k X A B
49 7 48 eqtr4d φ I = j X k X A j k X B j
50 49 fveq2d φ voln X I = voln X j X k X A j k X B j
51 1 4 21 fmptdf φ k X A : X
52 1 5 31 fmptdf φ k X B : X
53 eqid j X k X A j k X B j = j X k X A j k X B j
54 2 3 51 52 53 vonn0icc φ voln X j X k X A j k X B j = j X vol k X A j k X B j
55 34 fveq2d φ j X vol k X A j k X B j = vol j / k A j / k B
56 55 prodeq2dv φ j X vol k X A j k X B j = j X vol j / k A j / k B
57 45 fveq2d j = k vol j / k A j / k B = vol A B
58 nfcv _ k X
59 nfcv _ j X
60 nfcv _ k vol
61 60 37 nffv _ k vol j / k A j / k B
62 nfcv _ j vol A B
63 57 58 59 61 62 cbvprod j X vol j / k A j / k B = k X vol A B
64 63 a1i φ j X vol j / k A j / k B = k X vol A B
65 56 64 eqtrd φ j X vol k X A j k X B j = k X vol A B
66 50 54 65 3eqtrd φ voln X I = k X vol A B