Metamath Proof Explorer


Theorem vonn0icc2

Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0icc2.k kφ
vonn0icc2.x φXFin
vonn0icc2.n φX
vonn0icc2.a φkXA
vonn0icc2.b φkXB
vonn0icc2.i I=kXAB
Assertion vonn0icc2 φvolnXI=kXvolAB

Proof

Step Hyp Ref Expression
1 vonn0icc2.k kφ
2 vonn0icc2.x φXFin
3 vonn0icc2.n φX
4 vonn0icc2.a φkXA
5 vonn0icc2.b φkXB
6 vonn0icc2.i I=kXAB
7 6 a1i φI=kXAB
8 simpr φjXjX
9 nfv kjX
10 1 9 nfan kφjX
11 nfcsb1v _kj/kA
12 nfcv _k
13 11 12 nfel kj/kA
14 10 13 nfim kφjXj/kA
15 eleq1w k=jkXjX
16 15 anbi2d k=jφkXφjX
17 csbeq1a k=jA=j/kA
18 17 eleq1d k=jAj/kA
19 16 18 imbi12d k=jφkXAφjXj/kA
20 14 19 4 chvarfv φjXj/kA
21 eqid kXA=kXA
22 21 fvmpts jXj/kAkXAj=j/kA
23 8 20 22 syl2anc φjXkXAj=j/kA
24 nfcsb1v _kj/kB
25 24 12 nfel kj/kB
26 10 25 nfim kφjXj/kB
27 csbeq1a k=jB=j/kB
28 27 eleq1d k=jBj/kB
29 16 28 imbi12d k=jφkXBφjXj/kB
30 26 29 5 chvarfv φjXj/kB
31 eqid kXB=kXB
32 31 fvmpts jXj/kBkXBj=j/kB
33 8 30 32 syl2anc φjXkXBj=j/kB
34 23 33 oveq12d φjXkXAjkXBj=j/kAj/kB
35 34 ixpeq2dva φjXkXAjkXBj=jXj/kAj/kB
36 nfcv _k.
37 11 36 24 nfov _kj/kAj/kB
38 nfcv _jAB
39 17 equcoms j=kA=j/kA
40 39 eqcomd j=kj/kA=A
41 eqidd j=kA=A
42 40 41 eqtrd j=kj/kA=A
43 27 equcoms j=kB=j/kB
44 43 eqcomd j=kj/kB=B
45 42 44 oveq12d j=kj/kAj/kB=AB
46 37 38 45 cbvixp jXj/kAj/kB=kXAB
47 46 a1i φjXj/kAj/kB=kXAB
48 35 47 eqtrd φjXkXAjkXBj=kXAB
49 7 48 eqtr4d φI=jXkXAjkXBj
50 49 fveq2d φvolnXI=volnXjXkXAjkXBj
51 1 4 21 fmptdf φkXA:X
52 1 5 31 fmptdf φkXB:X
53 eqid jXkXAjkXBj=jXkXAjkXBj
54 2 3 51 52 53 vonn0icc φvolnXjXkXAjkXBj=jXvolkXAjkXBj
55 34 fveq2d φjXvolkXAjkXBj=volj/kAj/kB
56 55 prodeq2dv φjXvolkXAjkXBj=jXvolj/kAj/kB
57 45 fveq2d j=kvolj/kAj/kB=volAB
58 nfcv _kX
59 nfcv _jX
60 nfcv _kvol
61 60 37 nffv _kvolj/kAj/kB
62 nfcv _jvolAB
63 57 58 59 61 62 cbvprod jXvolj/kAj/kB=kXvolAB
64 63 a1i φjXvolj/kAj/kB=kXvolAB
65 56 64 eqtrd φjXvolkXAjkXBj=kXvolAB
66 50 54 65 3eqtrd φvolnXI=kXvolAB