Metamath Proof Explorer


Theorem ctvonmbl

Description: Any n-dimensional countable set is Lebesgue measurable. This is the second statement in Proposition 115G (e) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ctvonmbl.1
|- ( ph -> X e. Fin )
ctvonmbl.2
|- ( ph -> A C_ ( RR ^m X ) )
ctvonmbl.3
|- ( ph -> A ~<_ _om )
Assertion ctvonmbl
|- ( ph -> A e. dom ( voln ` X ) )

Proof

Step Hyp Ref Expression
1 ctvonmbl.1
 |-  ( ph -> X e. Fin )
2 ctvonmbl.2
 |-  ( ph -> A C_ ( RR ^m X ) )
3 ctvonmbl.3
 |-  ( ph -> A ~<_ _om )
4 iunid
 |-  U_ x e. A { x } = A
5 1 vonmea
 |-  ( ph -> ( voln ` X ) e. Meas )
6 eqid
 |-  dom ( voln ` X ) = dom ( voln ` X )
7 5 6 dmmeasal
 |-  ( ph -> dom ( voln ` X ) e. SAlg )
8 1 adantr
 |-  ( ( ph /\ x e. A ) -> X e. Fin )
9 2 sselda
 |-  ( ( ph /\ x e. A ) -> x e. ( RR ^m X ) )
10 8 9 snvonmbl
 |-  ( ( ph /\ x e. A ) -> { x } e. dom ( voln ` X ) )
11 7 3 10 saliuncl
 |-  ( ph -> U_ x e. A { x } e. dom ( voln ` X ) )
12 4 11 eqeltrrid
 |-  ( ph -> A e. dom ( voln ` X ) )