| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ctvonmbl.1 |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | ctvonmbl.2 |  |-  ( ph -> A C_ ( RR ^m X ) ) | 
						
							| 3 |  | ctvonmbl.3 |  |-  ( ph -> A ~<_ _om ) | 
						
							| 4 |  | iunid |  |-  U_ x e. A { x } = A | 
						
							| 5 | 1 | vonmea |  |-  ( ph -> ( voln ` X ) e. Meas ) | 
						
							| 6 |  | eqid |  |-  dom ( voln ` X ) = dom ( voln ` X ) | 
						
							| 7 | 5 6 | dmmeasal |  |-  ( ph -> dom ( voln ` X ) e. SAlg ) | 
						
							| 8 | 1 | adantr |  |-  ( ( ph /\ x e. A ) -> X e. Fin ) | 
						
							| 9 | 2 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. ( RR ^m X ) ) | 
						
							| 10 | 8 9 | snvonmbl |  |-  ( ( ph /\ x e. A ) -> { x } e. dom ( voln ` X ) ) | 
						
							| 11 | 7 3 10 | saliuncl |  |-  ( ph -> U_ x e. A { x } e. dom ( voln ` X ) ) | 
						
							| 12 | 4 11 | eqeltrrid |  |-  ( ph -> A e. dom ( voln ` X ) ) |