| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ctvonmbl.1 |
|- ( ph -> X e. Fin ) |
| 2 |
|
ctvonmbl.2 |
|- ( ph -> A C_ ( RR ^m X ) ) |
| 3 |
|
ctvonmbl.3 |
|- ( ph -> A ~<_ _om ) |
| 4 |
|
iunid |
|- U_ x e. A { x } = A |
| 5 |
1
|
vonmea |
|- ( ph -> ( voln ` X ) e. Meas ) |
| 6 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
| 7 |
5 6
|
dmmeasal |
|- ( ph -> dom ( voln ` X ) e. SAlg ) |
| 8 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> X e. Fin ) |
| 9 |
2
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. ( RR ^m X ) ) |
| 10 |
8 9
|
snvonmbl |
|- ( ( ph /\ x e. A ) -> { x } e. dom ( voln ` X ) ) |
| 11 |
7 3 10
|
saliuncl |
|- ( ph -> U_ x e. A { x } e. dom ( voln ` X ) ) |
| 12 |
4 11
|
eqeltrrid |
|- ( ph -> A e. dom ( voln ` X ) ) |