Step |
Hyp |
Ref |
Expression |
1 |
|
vsetrec.1 |
⊢ 𝐹 = ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) |
2 |
|
setind |
⊢ ( ∀ 𝑎 ( 𝑎 ⊆ setrecs ( 𝐹 ) → 𝑎 ∈ setrecs ( 𝐹 ) ) → setrecs ( 𝐹 ) = V ) |
3 |
|
vex |
⊢ 𝑎 ∈ V |
4 |
3
|
pwid |
⊢ 𝑎 ∈ 𝒫 𝑎 |
5 |
|
pweq |
⊢ ( 𝑥 = 𝑎 → 𝒫 𝑥 = 𝒫 𝑎 ) |
6 |
3
|
pwex |
⊢ 𝒫 𝑎 ∈ V |
7 |
5 1 6
|
fvmpt |
⊢ ( 𝑎 ∈ V → ( 𝐹 ‘ 𝑎 ) = 𝒫 𝑎 ) |
8 |
3 7
|
ax-mp |
⊢ ( 𝐹 ‘ 𝑎 ) = 𝒫 𝑎 |
9 |
|
eqid |
⊢ setrecs ( 𝐹 ) = setrecs ( 𝐹 ) |
10 |
3
|
a1i |
⊢ ( 𝑎 ⊆ setrecs ( 𝐹 ) → 𝑎 ∈ V ) |
11 |
|
id |
⊢ ( 𝑎 ⊆ setrecs ( 𝐹 ) → 𝑎 ⊆ setrecs ( 𝐹 ) ) |
12 |
9 10 11
|
setrec1 |
⊢ ( 𝑎 ⊆ setrecs ( 𝐹 ) → ( 𝐹 ‘ 𝑎 ) ⊆ setrecs ( 𝐹 ) ) |
13 |
8 12
|
eqsstrrid |
⊢ ( 𝑎 ⊆ setrecs ( 𝐹 ) → 𝒫 𝑎 ⊆ setrecs ( 𝐹 ) ) |
14 |
13
|
sseld |
⊢ ( 𝑎 ⊆ setrecs ( 𝐹 ) → ( 𝑎 ∈ 𝒫 𝑎 → 𝑎 ∈ setrecs ( 𝐹 ) ) ) |
15 |
4 14
|
mpi |
⊢ ( 𝑎 ⊆ setrecs ( 𝐹 ) → 𝑎 ∈ setrecs ( 𝐹 ) ) |
16 |
2 15
|
mpg |
⊢ setrecs ( 𝐹 ) = V |