| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vsetrec.1 |
|- F = ( x e. _V |-> ~P x ) |
| 2 |
|
setind |
|- ( A. a ( a C_ setrecs ( F ) -> a e. setrecs ( F ) ) -> setrecs ( F ) = _V ) |
| 3 |
|
vex |
|- a e. _V |
| 4 |
3
|
pwid |
|- a e. ~P a |
| 5 |
|
pweq |
|- ( x = a -> ~P x = ~P a ) |
| 6 |
|
vpwex |
|- ~P a e. _V |
| 7 |
5 1 6
|
fvmpt |
|- ( a e. _V -> ( F ` a ) = ~P a ) |
| 8 |
3 7
|
ax-mp |
|- ( F ` a ) = ~P a |
| 9 |
|
eqid |
|- setrecs ( F ) = setrecs ( F ) |
| 10 |
3
|
a1i |
|- ( a C_ setrecs ( F ) -> a e. _V ) |
| 11 |
|
id |
|- ( a C_ setrecs ( F ) -> a C_ setrecs ( F ) ) |
| 12 |
9 10 11
|
setrec1 |
|- ( a C_ setrecs ( F ) -> ( F ` a ) C_ setrecs ( F ) ) |
| 13 |
8 12
|
eqsstrrid |
|- ( a C_ setrecs ( F ) -> ~P a C_ setrecs ( F ) ) |
| 14 |
13
|
sseld |
|- ( a C_ setrecs ( F ) -> ( a e. ~P a -> a e. setrecs ( F ) ) ) |
| 15 |
4 14
|
mpi |
|- ( a C_ setrecs ( F ) -> a e. setrecs ( F ) ) |
| 16 |
2 15
|
mpg |
|- setrecs ( F ) = _V |