| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vsetrec.1 |  |-  F = ( x e. _V |-> ~P x ) | 
						
							| 2 |  | setind |  |-  ( A. a ( a C_ setrecs ( F ) -> a e. setrecs ( F ) ) -> setrecs ( F ) = _V ) | 
						
							| 3 |  | vex |  |-  a e. _V | 
						
							| 4 | 3 | pwid |  |-  a e. ~P a | 
						
							| 5 |  | pweq |  |-  ( x = a -> ~P x = ~P a ) | 
						
							| 6 |  | vpwex |  |-  ~P a e. _V | 
						
							| 7 | 5 1 6 | fvmpt |  |-  ( a e. _V -> ( F ` a ) = ~P a ) | 
						
							| 8 | 3 7 | ax-mp |  |-  ( F ` a ) = ~P a | 
						
							| 9 |  | eqid |  |-  setrecs ( F ) = setrecs ( F ) | 
						
							| 10 | 3 | a1i |  |-  ( a C_ setrecs ( F ) -> a e. _V ) | 
						
							| 11 |  | id |  |-  ( a C_ setrecs ( F ) -> a C_ setrecs ( F ) ) | 
						
							| 12 | 9 10 11 | setrec1 |  |-  ( a C_ setrecs ( F ) -> ( F ` a ) C_ setrecs ( F ) ) | 
						
							| 13 | 8 12 | eqsstrrid |  |-  ( a C_ setrecs ( F ) -> ~P a C_ setrecs ( F ) ) | 
						
							| 14 | 13 | sseld |  |-  ( a C_ setrecs ( F ) -> ( a e. ~P a -> a e. setrecs ( F ) ) ) | 
						
							| 15 | 4 14 | mpi |  |-  ( a C_ setrecs ( F ) -> a e. setrecs ( F ) ) | 
						
							| 16 | 2 15 | mpg |  |-  setrecs ( F ) = _V |