| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlklnwwlkln2lem.1 | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  →  ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 2 | wwlknbp | ⊢ ( 𝑃  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 4 |  | iswwlksn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑃  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝑃  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 6 |  | lencl | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0cnd | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 9 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  1  ∈  ℂ ) | 
						
							| 10 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 12 | 8 9 11 | subadd2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁  ↔  ( 𝑁  +  1 )  =  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 13 |  | eqcom | ⊢ ( ( 𝑁  +  1 )  =  ( ♯ ‘ 𝑃 )  ↔  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) | 
						
							| 14 | 12 13 | bitr2di | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 )  ↔  ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁 ) ) | 
						
							| 15 | 14 | biimpcd | ⊢ ( ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁 ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁 ) | 
						
							| 18 | 1 | com12 | ⊢ ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  →  ( 𝜑  →  ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) )  →  ( 𝜑  →  ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  →  ( 𝜑  →  ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  ∧  𝜑 )  →  ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  ∧  𝜑 )  ∧  𝑓 ( Walks ‘ 𝐺 ) 𝑃 )  →  𝑓 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 23 |  | wlklenvm1 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 24 | 22 23 | jccir | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  ∧  𝜑 )  ∧  𝑓 ( Walks ‘ 𝐺 ) 𝑃 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  ∧  𝜑 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) ) | 
						
							| 26 | 25 | eximdv | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  ∧  𝜑 )  →  ( ∃ 𝑓 𝑓 ( Walks ‘ 𝐺 ) 𝑃  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) ) | 
						
							| 27 | 21 26 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  ∧  𝜑 )  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 28 |  | eqeq2 | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁  →  ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 )  ↔  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) | 
						
							| 29 | 28 | anbi2d | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↔  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) | 
						
							| 30 | 29 | exbidv | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↔  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) | 
						
							| 31 | 27 30 | imbitrid | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁  →  ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  ∧  𝜑 )  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) | 
						
							| 32 | 31 | expd | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  =  𝑁  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  →  ( 𝜑  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) ) | 
						
							| 33 | 17 32 | mpcom | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) ) )  →  ( 𝜑  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝑃  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  ( 𝑁  +  1 ) )  →  ( 𝜑  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) ) | 
						
							| 35 | 5 34 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝑃  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝜑  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) ) | 
						
							| 36 | 35 | 3adant1 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝑃  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝜑  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) ) | 
						
							| 37 | 3 36 | mpcom | ⊢ ( 𝑃  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝜑  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) | 
						
							| 38 | 37 | com12 | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( 𝑁  WWalksN  𝐺 )  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑃  ∧  ( ♯ ‘ 𝑓 )  =  𝑁 ) ) ) |