| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlklnwwlkln2lem.1 |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | wwlknbp |  | 
						
							| 4 |  | iswwlksn |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | lencl |  | 
						
							| 7 | 6 | nn0cnd |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | 1cnd |  | 
						
							| 10 |  | nn0cn |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 8 9 11 | subadd2d |  | 
						
							| 13 |  | eqcom |  | 
						
							| 14 | 12 13 | bitr2di |  | 
						
							| 15 | 14 | biimpcd |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 16 | impcom |  | 
						
							| 18 | 1 | com12 |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 20 | imp |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 |  | wlklenvm1 |  | 
						
							| 24 | 22 23 | jccir |  | 
						
							| 25 | 24 | ex |  | 
						
							| 26 | 25 | eximdv |  | 
						
							| 27 | 21 26 | mpd |  | 
						
							| 28 |  | eqeq2 |  | 
						
							| 29 | 28 | anbi2d |  | 
						
							| 30 | 29 | exbidv |  | 
						
							| 31 | 27 30 | imbitrid |  | 
						
							| 32 | 31 | expd |  | 
						
							| 33 | 17 32 | mpcom |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 | 5 34 | sylbid |  | 
						
							| 36 | 35 | 3adant1 |  | 
						
							| 37 | 3 36 | mpcom |  | 
						
							| 38 | 37 | com12 |  |