| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xmetsym | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 𝐷 𝑦 )  =  ( 𝑦 𝐷 𝑥 ) ) | 
						
							| 2 | 1 | 3expb | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 𝐷 𝑦 )  =  ( 𝑦 𝐷 𝑥 ) ) | 
						
							| 3 | 2 | ralrimivva | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  =  ( 𝑦 𝐷 𝑥 ) ) | 
						
							| 4 |  | xmetf | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ* ) | 
						
							| 5 |  | ffn | ⊢ ( 𝐷 : ( 𝑋  ×  𝑋 ) ⟶ ℝ*  →  𝐷  Fn  ( 𝑋  ×  𝑋 ) ) | 
						
							| 6 |  | tpossym | ⊢ ( 𝐷  Fn  ( 𝑋  ×  𝑋 )  →  ( tpos  𝐷  =  𝐷  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  =  ( 𝑦 𝐷 𝑥 ) ) ) | 
						
							| 7 | 4 5 6 | 3syl | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( tpos  𝐷  =  𝐷  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  =  ( 𝑦 𝐷 𝑥 ) ) ) | 
						
							| 8 | 3 7 | mpbird | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  tpos  𝐷  =  𝐷 ) |