Metamath Proof Explorer


Theorem xmettpos

Description: The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmettpos D∞MetXtposD=D

Proof

Step Hyp Ref Expression
1 xmetsym D∞MetXxXyXxDy=yDx
2 1 3expb D∞MetXxXyXxDy=yDx
3 2 ralrimivva D∞MetXxXyXxDy=yDx
4 xmetf D∞MetXD:X×X*
5 ffn D:X×X*DFnX×X
6 tpossym DFnX×XtposD=DxXyXxDy=yDx
7 4 5 6 3syl D∞MetXtposD=DxXyXxDy=yDx
8 3 7 mpbird D∞MetXtposD=D