| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relxp | ⊢ Rel  ( { 𝑥  ∣  𝜑 }  ×  { 𝑦  ∣  𝜓 } ) | 
						
							| 2 |  | relopabv | ⊢ Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝜑  ∧  𝜓 ) } | 
						
							| 3 |  | df-clab | ⊢ ( 𝑎  ∈  { 𝑥  ∣  𝜑 }  ↔  [ 𝑎  /  𝑥 ] 𝜑 ) | 
						
							| 4 |  | df-clab | ⊢ ( 𝑏  ∈  { 𝑦  ∣  𝜓 }  ↔  [ 𝑏  /  𝑦 ] 𝜓 ) | 
						
							| 5 | 3 4 | anbi12i | ⊢ ( ( 𝑎  ∈  { 𝑥  ∣  𝜑 }  ∧  𝑏  ∈  { 𝑦  ∣  𝜓 } )  ↔  ( [ 𝑎  /  𝑥 ] 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 ) ) | 
						
							| 6 |  | sban | ⊢ ( [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 )  ↔  ( [ 𝑏  /  𝑦 ] 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 ) ) | 
						
							| 7 |  | sbsbc | ⊢ ( [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 )  ↔  [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 ) ) | 
						
							| 8 |  | sbv | ⊢ ( [ 𝑏  /  𝑦 ] 𝜑  ↔  𝜑 ) | 
						
							| 9 | 8 | anbi1i | ⊢ ( ( [ 𝑏  /  𝑦 ] 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 )  ↔  ( 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 ) ) | 
						
							| 10 | 6 7 9 | 3bitr3i | ⊢ ( [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 ) ) | 
						
							| 11 | 10 | sbbii | ⊢ ( [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 )  ↔  [ 𝑎  /  𝑥 ] ( 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 ) ) | 
						
							| 12 |  | sbsbc | ⊢ ( [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 )  ↔  [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 ) ) | 
						
							| 13 |  | sban | ⊢ ( [ 𝑎  /  𝑥 ] ( 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 )  ↔  ( [ 𝑎  /  𝑥 ] 𝜑  ∧  [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓 ) ) | 
						
							| 14 |  | sbv | ⊢ ( [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓  ↔  [ 𝑏  /  𝑦 ] 𝜓 ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( [ 𝑎  /  𝑥 ] 𝜑  ∧  [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] 𝜓 )  ↔  ( [ 𝑎  /  𝑥 ] 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 ) ) | 
						
							| 16 | 13 15 | bitri | ⊢ ( [ 𝑎  /  𝑥 ] ( 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 )  ↔  ( [ 𝑎  /  𝑥 ] 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 ) ) | 
						
							| 17 | 11 12 16 | 3bitr3i | ⊢ ( [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 )  ↔  ( [ 𝑎  /  𝑥 ] 𝜑  ∧  [ 𝑏  /  𝑦 ] 𝜓 ) ) | 
						
							| 18 | 5 17 | bitr4i | ⊢ ( ( 𝑎  ∈  { 𝑥  ∣  𝜑 }  ∧  𝑏  ∈  { 𝑦  ∣  𝜓 } )  ↔  [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 ) ) | 
						
							| 19 |  | brxp | ⊢ ( 𝑎 ( { 𝑥  ∣  𝜑 }  ×  { 𝑦  ∣  𝜓 } ) 𝑏  ↔  ( 𝑎  ∈  { 𝑥  ∣  𝜑 }  ∧  𝑏  ∈  { 𝑦  ∣  𝜓 } ) ) | 
						
							| 20 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝜑  ∧  𝜓 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝜑  ∧  𝜓 ) } | 
						
							| 21 | 20 | brabsb | ⊢ ( 𝑎 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝜑  ∧  𝜓 ) } 𝑏  ↔  [ 𝑎  /  𝑥 ] [ 𝑏  /  𝑦 ] ( 𝜑  ∧  𝜓 ) ) | 
						
							| 22 | 18 19 21 | 3bitr4i | ⊢ ( 𝑎 ( { 𝑥  ∣  𝜑 }  ×  { 𝑦  ∣  𝜓 } ) 𝑏  ↔  𝑎 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝜑  ∧  𝜓 ) } 𝑏 ) | 
						
							| 23 | 1 2 22 | eqbrriv | ⊢ ( { 𝑥  ∣  𝜑 }  ×  { 𝑦  ∣  𝜓 } )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝜑  ∧  𝜓 ) } |