| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relxp |  |-  Rel ( { x | ph } X. { y | ps } ) | 
						
							| 2 |  | relopabv |  |-  Rel { <. x , y >. | ( ph /\ ps ) } | 
						
							| 3 |  | df-clab |  |-  ( a e. { x | ph } <-> [ a / x ] ph ) | 
						
							| 4 |  | df-clab |  |-  ( b e. { y | ps } <-> [ b / y ] ps ) | 
						
							| 5 | 3 4 | anbi12i |  |-  ( ( a e. { x | ph } /\ b e. { y | ps } ) <-> ( [ a / x ] ph /\ [ b / y ] ps ) ) | 
						
							| 6 |  | sban |  |-  ( [ b / y ] ( ph /\ ps ) <-> ( [ b / y ] ph /\ [ b / y ] ps ) ) | 
						
							| 7 |  | sbsbc |  |-  ( [ b / y ] ( ph /\ ps ) <-> [. b / y ]. ( ph /\ ps ) ) | 
						
							| 8 |  | sbv |  |-  ( [ b / y ] ph <-> ph ) | 
						
							| 9 | 8 | anbi1i |  |-  ( ( [ b / y ] ph /\ [ b / y ] ps ) <-> ( ph /\ [ b / y ] ps ) ) | 
						
							| 10 | 6 7 9 | 3bitr3i |  |-  ( [. b / y ]. ( ph /\ ps ) <-> ( ph /\ [ b / y ] ps ) ) | 
						
							| 11 | 10 | sbbii |  |-  ( [ a / x ] [. b / y ]. ( ph /\ ps ) <-> [ a / x ] ( ph /\ [ b / y ] ps ) ) | 
						
							| 12 |  | sbsbc |  |-  ( [ a / x ] [. b / y ]. ( ph /\ ps ) <-> [. a / x ]. [. b / y ]. ( ph /\ ps ) ) | 
						
							| 13 |  | sban |  |-  ( [ a / x ] ( ph /\ [ b / y ] ps ) <-> ( [ a / x ] ph /\ [ a / x ] [ b / y ] ps ) ) | 
						
							| 14 |  | sbv |  |-  ( [ a / x ] [ b / y ] ps <-> [ b / y ] ps ) | 
						
							| 15 | 14 | anbi2i |  |-  ( ( [ a / x ] ph /\ [ a / x ] [ b / y ] ps ) <-> ( [ a / x ] ph /\ [ b / y ] ps ) ) | 
						
							| 16 | 13 15 | bitri |  |-  ( [ a / x ] ( ph /\ [ b / y ] ps ) <-> ( [ a / x ] ph /\ [ b / y ] ps ) ) | 
						
							| 17 | 11 12 16 | 3bitr3i |  |-  ( [. a / x ]. [. b / y ]. ( ph /\ ps ) <-> ( [ a / x ] ph /\ [ b / y ] ps ) ) | 
						
							| 18 | 5 17 | bitr4i |  |-  ( ( a e. { x | ph } /\ b e. { y | ps } ) <-> [. a / x ]. [. b / y ]. ( ph /\ ps ) ) | 
						
							| 19 |  | brxp |  |-  ( a ( { x | ph } X. { y | ps } ) b <-> ( a e. { x | ph } /\ b e. { y | ps } ) ) | 
						
							| 20 |  | eqid |  |-  { <. x , y >. | ( ph /\ ps ) } = { <. x , y >. | ( ph /\ ps ) } | 
						
							| 21 | 20 | brabsb |  |-  ( a { <. x , y >. | ( ph /\ ps ) } b <-> [. a / x ]. [. b / y ]. ( ph /\ ps ) ) | 
						
							| 22 | 18 19 21 | 3bitr4i |  |-  ( a ( { x | ph } X. { y | ps } ) b <-> a { <. x , y >. | ( ph /\ ps ) } b ) | 
						
							| 23 | 1 2 22 | eqbrriv |  |-  ( { x | ph } X. { y | ps } ) = { <. x , y >. | ( ph /\ ps ) } |