| Step | Hyp | Ref | Expression | 
						
							| 1 |  | el | ⊢ ∃ 𝑤 𝑥  ∈  𝑤 | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑤 𝑥  ∈  𝑦 | 
						
							| 3 |  | nfe1 | ⊢ Ⅎ 𝑤 ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) | 
						
							| 4 | 2 3 | nfim | ⊢ Ⅎ 𝑤 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) | 
						
							| 5 | 4 | nfal | ⊢ Ⅎ 𝑤 ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) | 
						
							| 6 | 2 5 | nfan | ⊢ Ⅎ 𝑤 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) | 
						
							| 7 | 6 | nfex | ⊢ Ⅎ 𝑤 ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) | 
						
							| 8 |  | axinfnd | ⊢ ∃ 𝑦 ( 𝑥  ∈  𝑤  →  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) ) | 
						
							| 9 | 8 | 19.37iv | ⊢ ( 𝑥  ∈  𝑤  →  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) ) | 
						
							| 10 | 7 9 | exlimi | ⊢ ( ∃ 𝑤 𝑥  ∈  𝑤  →  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) ) | 
						
							| 11 | 1 10 | ax-mp | ⊢ ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) | 
						
							| 12 |  | elequ1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ∈  𝑦  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 13 |  | elequ1 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ∈  𝑤  ↔  𝑥  ∈  𝑤 ) ) | 
						
							| 14 | 13 | anbi1d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 )  ↔  ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) | 
						
							| 15 | 14 | exbidv | ⊢ ( 𝑧  =  𝑥  →  ( ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 )  ↔  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) | 
						
							| 16 | 12 15 | imbi12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) )  ↔  ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) ) | 
						
							| 17 | 16 | cbvalvw | ⊢ ( ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) | 
						
							| 18 | 17 | anbi2i | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) ) | 
						
							| 19 | 18 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) )  ↔  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ∃ 𝑤 ( 𝑥  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) ) | 
						
							| 20 | 11 19 | mpbir | ⊢ ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑦  →  ∃ 𝑤 ( 𝑧  ∈  𝑤  ∧  𝑤  ∈  𝑦 ) ) ) |