Metamath Proof Explorer


Theorem zorn2lem2

Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( 𝑣𝐶𝑢𝐶 ¬ 𝑢 𝑤 𝑣 ) ) )
zorn2lem.4 𝐶 = { 𝑧𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 }
zorn2lem.5 𝐷 = { 𝑧𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 𝑧 }
Assertion zorn2lem2 ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴𝐷 ≠ ∅ ) ) → ( 𝑦𝑥 → ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 zorn2lem.3 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( 𝑣𝐶𝑢𝐶 ¬ 𝑢 𝑤 𝑣 ) ) )
2 zorn2lem.4 𝐶 = { 𝑧𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 }
3 zorn2lem.5 𝐷 = { 𝑧𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 𝑧 }
4 1 2 3 zorn2lem1 ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴𝐷 ≠ ∅ ) ) → ( 𝐹𝑥 ) ∈ 𝐷 )
5 breq2 ( 𝑧 = ( 𝐹𝑥 ) → ( 𝑔 𝑅 𝑧𝑔 𝑅 ( 𝐹𝑥 ) ) )
6 5 ralbidv ( 𝑧 = ( 𝐹𝑥 ) → ( ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 ( 𝐹𝑥 ) ) )
7 6 3 elrab2 ( ( 𝐹𝑥 ) ∈ 𝐷 ↔ ( ( 𝐹𝑥 ) ∈ 𝐴 ∧ ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 ( 𝐹𝑥 ) ) )
8 7 simprbi ( ( 𝐹𝑥 ) ∈ 𝐷 → ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 ( 𝐹𝑥 ) )
9 4 8 syl ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴𝐷 ≠ ∅ ) ) → ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 ( 𝐹𝑥 ) )
10 1 tfr1 𝐹 Fn On
11 onss ( 𝑥 ∈ On → 𝑥 ⊆ On )
12 fnfvima ( ( 𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) )
13 12 3expia ( ( 𝐹 Fn On ∧ 𝑥 ⊆ On ) → ( 𝑦𝑥 → ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ) )
14 10 11 13 sylancr ( 𝑥 ∈ On → ( 𝑦𝑥 → ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ) )
15 14 adantr ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴𝐷 ≠ ∅ ) ) → ( 𝑦𝑥 → ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) ) )
16 breq1 ( 𝑔 = ( 𝐹𝑦 ) → ( 𝑔 𝑅 ( 𝐹𝑥 ) ↔ ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑥 ) ) )
17 16 rspccv ( ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 ( 𝐹𝑥 ) → ( ( 𝐹𝑦 ) ∈ ( 𝐹𝑥 ) → ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑥 ) ) )
18 9 15 17 sylsyld ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴𝐷 ≠ ∅ ) ) → ( 𝑦𝑥 → ( 𝐹𝑦 ) 𝑅 ( 𝐹𝑥 ) ) )