Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intab | Unicode version |
Description: The intersection of a
special case of a class abstraction. may be
free in and , which can be thought of a ( ) and
A ( ) . Typically, abrexex2 6781 or abexssex 6782 can be used to
satisfy the second hypothesis. (Contributed by NM, 28-Jul-2006.)
(Proof shortened by Mario Carneiro,
14-Nov-2016.) |
Ref | Expression |
---|---|
intab.1 | |
intab.2 |
Ref | Expression |
---|---|
intab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2461 | . . . . . . . . . 10 | |
2 | 1 | anbi2d 703 | . . . . . . . . 9 |
3 | 2 | exbidv 1714 | . . . . . . . 8 |
4 | 3 | cbvabv 2600 | . . . . . . 7 |
5 | intab.2 | . . . . . . 7 | |
6 | 4, 5 | eqeltri 2541 | . . . . . 6 |
7 | nfe1 1840 | . . . . . . . . 9 | |
8 | 7 | nfab 2623 | . . . . . . . 8 |
9 | 8 | nfeq2 2636 | . . . . . . 7 |
10 | eleq2 2530 | . . . . . . . 8 | |
11 | 10 | imbi2d 316 | . . . . . . 7 |
12 | 9, 11 | albid 1885 | . . . . . 6 |
13 | 6, 12 | elab 3246 | . . . . 5 |
14 | 19.8a 1857 | . . . . . . . . 9 | |
15 | 14 | ex 434 | . . . . . . . 8 |
16 | 15 | alrimiv 1719 | . . . . . . 7 |
17 | intab.1 | . . . . . . . 8 | |
18 | 17 | sbc6 3354 | . . . . . . 7 |
19 | 16, 18 | sylibr 212 | . . . . . 6 |
20 | df-sbc 3328 | . . . . . 6 | |
21 | 19, 20 | sylib 196 | . . . . 5 |
22 | 13, 21 | mpgbir 1622 | . . . 4 |
23 | intss1 4301 | . . . 4 | |
24 | 22, 23 | ax-mp 5 | . . 3 |
25 | 19.29r 1684 | . . . . . . . 8 | |
26 | simplr 755 | . . . . . . . . . 10 | |
27 | pm3.35 587 | . . . . . . . . . . 11 | |
28 | 27 | adantlr 714 | . . . . . . . . . 10 |
29 | 26, 28 | eqeltrd 2545 | . . . . . . . . 9 |
30 | 29 | exlimiv 1722 | . . . . . . . 8 |
31 | 25, 30 | syl 16 | . . . . . . 7 |
32 | 31 | ex 434 | . . . . . 6 |
33 | 32 | alrimiv 1719 | . . . . 5 |
34 | vex 3112 | . . . . . 6 | |
35 | 34 | elintab 4297 | . . . . 5 |
36 | 33, 35 | sylibr 212 | . . . 4 |
37 | 36 | abssi 3574 | . . 3 |
38 | 24, 37 | eqssi 3519 | . 2 |
39 | 38, 4 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 = wceq 1395 E. wex 1612
e. wcel 1818 { cab 2442 cvv 3109
[. wsbc 3327 C_ wss 3475 |^| cint 4286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-in 3482 df-ss 3489 df-int 4287 |
Copyright terms: Public domain | W3C validator |