Step |
Hyp |
Ref |
Expression |
1 |
|
intab.1 |
⊢ 𝐴 ∈ V |
2 |
|
intab.2 |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) } ∈ V |
3 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝐴 ↔ 𝑥 = 𝐴 ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ↔ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
5 |
4
|
exbidv |
⊢ ( 𝑧 = 𝑥 → ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ↔ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
6 |
5
|
cbvabv |
⊢ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) } |
7 |
6 2
|
eqeltri |
⊢ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ∈ V |
8 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) |
9 |
8
|
nfab |
⊢ Ⅎ 𝑦 { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } |
10 |
9
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } |
11 |
|
eleq2 |
⊢ ( 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } → ( ( 𝜑 → 𝐴 ∈ 𝑥 ) ↔ ( 𝜑 → 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) ) ) |
13 |
10 12
|
albid |
⊢ ( 𝑥 = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } → ( ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) ↔ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) ) ) |
14 |
7 13
|
elab |
⊢ ( { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ∈ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ↔ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) ) |
15 |
|
19.8a |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝐴 ) → ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) |
16 |
15
|
ex |
⊢ ( 𝜑 → ( 𝑧 = 𝐴 → ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) ) |
17 |
16
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 = 𝐴 → ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) ) |
18 |
1
|
sbc6 |
⊢ ( [ 𝐴 / 𝑧 ] ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ↔ ∀ 𝑧 ( 𝑧 = 𝐴 → ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) ) |
19 |
17 18
|
sylibr |
⊢ ( 𝜑 → [ 𝐴 / 𝑧 ] ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ) |
20 |
|
df-sbc |
⊢ ( [ 𝐴 / 𝑧 ] ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ↔ 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) |
21 |
19 20
|
sylib |
⊢ ( 𝜑 → 𝐴 ∈ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) |
22 |
14 21
|
mpgbir |
⊢ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ∈ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } |
23 |
|
intss1 |
⊢ ( { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ∈ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } → ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ⊆ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ) |
24 |
22 23
|
ax-mp |
⊢ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ⊆ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } |
25 |
|
19.29r |
⊢ ( ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → ∃ 𝑦 ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) ) |
26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝑧 = 𝐴 ) |
27 |
|
pm3.35 |
⊢ ( ( 𝜑 ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝐴 ∈ 𝑥 ) |
28 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝐴 ∈ 𝑥 ) |
29 |
26 28
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) |
30 |
29
|
exlimiv |
⊢ ( ∃ 𝑦 ( ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) |
31 |
25 30
|
syl |
⊢ ( ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) ∧ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) ) → 𝑧 ∈ 𝑥 ) |
32 |
31
|
ex |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) → ( ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
33 |
32
|
alrimiv |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) → ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
34 |
|
vex |
⊢ 𝑧 ∈ V |
35 |
34
|
elintab |
⊢ ( 𝑧 ∈ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
36 |
33 35
|
sylibr |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) → 𝑧 ∈ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } ) |
37 |
36
|
abssi |
⊢ { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } ⊆ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } |
38 |
24 37
|
eqssi |
⊢ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } = { 𝑧 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑧 = 𝐴 ) } |
39 |
38 6
|
eqtri |
⊢ ∩ { 𝑥 ∣ ∀ 𝑦 ( 𝜑 → 𝐴 ∈ 𝑥 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) } |