Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intmin | Unicode version |
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
intmin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . 5 | |
2 | 1 | elintrab 4298 | . . . 4 |
3 | ssid 3522 | . . . . 5 | |
4 | sseq2 3525 | . . . . . . 7 | |
5 | eleq2 2530 | . . . . . . 7 | |
6 | 4, 5 | imbi12d 320 | . . . . . 6 |
7 | 6 | rspcv 3206 | . . . . 5 |
8 | 3, 7 | mpii 43 | . . . 4 |
9 | 2, 8 | syl5bi 217 | . . 3 |
10 | 9 | ssrdv 3509 | . 2 |
11 | ssintub 4304 | . . 3 | |
12 | 11 | a1i 11 | . 2 |
13 | 10, 12 | eqssd 3520 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 A. wral 2807 { crab 2811
C_ wss 3475 |^| cint 4286 |
This theorem is referenced by: intmin2 4314 ordintdif 4932 bm2.5ii 6641 onsucmin 6656 rankonidlem 8267 rankval4 8306 mrcid 15010 lspid 17628 aspid 17979 cldcls 19543 spanid 26265 chsupid 26330 igenidl2 30462 pclidN 35620 diaocN 36852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rab 2816 df-v 3111 df-in 3482 df-ss 3489 df-int 4287 |
Copyright terms: Public domain | W3C validator |