MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin Unicode version

Theorem intmin 4306
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin
Distinct variable groups:   ,   ,

Proof of Theorem intmin
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 3112 . . . . 5
21elintrab 4298 . . . 4
3 ssid 3522 . . . . 5
4 sseq2 3525 . . . . . . 7
5 eleq2 2530 . . . . . . 7
64, 5imbi12d 320 . . . . . 6
76rspcv 3206 . . . . 5
83, 7mpii 43 . . . 4
92, 8syl5bi 217 . . 3
109ssrdv 3509 . 2
11 ssintub 4304 . . 3
1211a1i 11 . 2
1310, 12eqssd 3520 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  A.wral 2807  {crab 2811  C_wss 3475  |^|cint 4286
This theorem is referenced by:  intmin2  4314  ordintdif  4932  bm2.5ii  6641  onsucmin  6656  rankonidlem  8267  rankval4  8306  mrcid  15010  lspid  17628  aspid  17979  cldcls  19543  spanid  26265  chsupid  26330  igenidl2  30462  pclidN  35620  diaocN  36852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-in 3482  df-ss 3489  df-int 4287
  Copyright terms: Public domain W3C validator