Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota1 Unicode version

Theorem iota1 5570
 Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
iota1

Proof of Theorem iota1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 2286 . 2
2 sp 1859 . . . . 5
3 iotaval 5567 . . . . . 6
43eqeq2d 2471 . . . . 5
52, 4bitr4d 256 . . . 4
6 eqcom 2466 . . . 4
75, 6syl6bb 261 . . 3
87exlimiv 1722 . 2
91, 8sylbi 195 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  =wceq 1395  E.wex 1612  E!weu 2282  iotacio 5554 This theorem is referenced by:  iota2df  5580  sniota  5583  tz6.12-1  5887  opabiota  5936  riota1  6276  riota1a  6277  erovlem  7426  gsumval3OLD  16908  gsumval3lem2  16910  bnj1366  33888 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-v 3111  df-sbc 3328  df-un 3480  df-sn 4030  df-pr 4032  df-uni 4250  df-iota 5556
 Copyright terms: Public domain W3C validator