![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > iunxpf | Unicode version |
Description: Indexed union on a Cartesian product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
iunxpf.1 | |
iunxpf.2 | |
iunxpf.3 | |
iunxpf.4 |
Ref | Expression |
---|---|
iunxpf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpf.1 | . . . . 5 | |
2 | 1 | nfcri 2612 | . . . 4 |
3 | iunxpf.2 | . . . . 5 | |
4 | 3 | nfcri 2612 | . . . 4 |
5 | iunxpf.3 | . . . . 5 | |
6 | 5 | nfcri 2612 | . . . 4 |
7 | iunxpf.4 | . . . . 5 | |
8 | 7 | eleq2d 2527 | . . . 4 |
9 | 2, 4, 6, 8 | rexxpf 5155 | . . 3 |
10 | eliun 4335 | . . 3 | |
11 | eliun 4335 | . . . 4 | |
12 | eliun 4335 | . . . . 5 | |
13 | 12 | rexbii 2959 | . . . 4 |
14 | 11, 13 | bitri 249 | . . 3 |
15 | 9, 10, 14 | 3bitr4i 277 | . 2 |
16 | 15 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 F/_ wnfc 2605 E. wrex 2808
<. cop 4035 U_ ciun 4330 X. cxp 5002 |
This theorem is referenced by: dfmpt2 6890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-iun 4332 df-opab 4511 df-xp 5010 df-rel 5011 |
Copyright terms: Public domain | W3C validator |