Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpiin | Unicode version |
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) |
Ref | Expression |
---|---|
ixpiin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28zv 3924 | . . . 4 | |
2 | vex 3112 | . . . . . 6 | |
3 | eliin 4336 | . . . . . 6 | |
4 | 2, 3 | ax-mp 5 | . . . . 5 |
5 | 2 | elixp 7496 | . . . . . 6 |
6 | 5 | ralbii 2888 | . . . . 5 |
7 | 4, 6 | bitri 249 | . . . 4 |
8 | 2 | elixp 7496 | . . . . 5 |
9 | fvex 5881 | . . . . . . . . 9 | |
10 | eliin 4336 | . . . . . . . . 9 | |
11 | 9, 10 | ax-mp 5 | . . . . . . . 8 |
12 | 11 | ralbii 2888 | . . . . . . 7 |
13 | ralcom 3018 | . . . . . . 7 | |
14 | 12, 13 | bitri 249 | . . . . . 6 |
15 | 14 | anbi2i 694 | . . . . 5 |
16 | 8, 15 | bitri 249 | . . . 4 |
17 | 1, 7, 16 | 3bitr4g 288 | . . 3 |
18 | 17 | eqrdv 2454 | . 2 |
19 | 18 | eqcomd 2465 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 cvv 3109
c0 3784 |^|_ ciin 4331 Fn wfn 5588
` cfv 5593 X_ cixp 7489 |
This theorem is referenced by: ixpint 7516 ptbasfi 20082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-nul 4581 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iin 4333 df-br 4453 df-opab 4511 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 df-ixp 7490 |
Copyright terms: Public domain | W3C validator |