| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2lgslem2.n |  |-  N = ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) | 
						
							| 2 |  | nnnn0 |  |-  ( P e. NN -> P e. NN0 ) | 
						
							| 3 |  | 8nn |  |-  8 e. NN | 
						
							| 4 |  | nnrp |  |-  ( 8 e. NN -> 8 e. RR+ ) | 
						
							| 5 | 3 4 | ax-mp |  |-  8 e. RR+ | 
						
							| 6 |  | modmuladdnn0 |  |-  ( ( P e. NN0 /\ 8 e. RR+ ) -> ( ( P mod 8 ) = 3 -> E. k e. NN0 P = ( ( k x. 8 ) + 3 ) ) ) | 
						
							| 7 | 2 5 6 | sylancl |  |-  ( P e. NN -> ( ( P mod 8 ) = 3 -> E. k e. NN0 P = ( ( k x. 8 ) + 3 ) ) ) | 
						
							| 8 |  | simpr |  |-  ( ( P e. NN /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 9 |  | nn0cn |  |-  ( k e. NN0 -> k e. CC ) | 
						
							| 10 |  | 8cn |  |-  8 e. CC | 
						
							| 11 | 10 | a1i |  |-  ( k e. NN0 -> 8 e. CC ) | 
						
							| 12 | 9 11 | mulcomd |  |-  ( k e. NN0 -> ( k x. 8 ) = ( 8 x. k ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( P e. NN /\ k e. NN0 ) -> ( k x. 8 ) = ( 8 x. k ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( P e. NN /\ k e. NN0 ) -> ( ( k x. 8 ) + 3 ) = ( ( 8 x. k ) + 3 ) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ( P e. NN /\ k e. NN0 ) -> ( P = ( ( k x. 8 ) + 3 ) <-> P = ( ( 8 x. k ) + 3 ) ) ) | 
						
							| 16 | 15 | biimpa |  |-  ( ( ( P e. NN /\ k e. NN0 ) /\ P = ( ( k x. 8 ) + 3 ) ) -> P = ( ( 8 x. k ) + 3 ) ) | 
						
							| 17 | 1 | 2lgslem3b |  |-  ( ( k e. NN0 /\ P = ( ( 8 x. k ) + 3 ) ) -> N = ( ( 2 x. k ) + 1 ) ) | 
						
							| 18 | 8 16 17 | syl2an2r |  |-  ( ( ( P e. NN /\ k e. NN0 ) /\ P = ( ( k x. 8 ) + 3 ) ) -> N = ( ( 2 x. k ) + 1 ) ) | 
						
							| 19 |  | oveq1 |  |-  ( N = ( ( 2 x. k ) + 1 ) -> ( N mod 2 ) = ( ( ( 2 x. k ) + 1 ) mod 2 ) ) | 
						
							| 20 |  | nn0z |  |-  ( k e. NN0 -> k e. ZZ ) | 
						
							| 21 |  | eqidd |  |-  ( k e. NN0 -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 22 |  | 2tp1odd |  |-  ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( ( 2 x. k ) + 1 ) ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) | 
						
							| 23 | 20 21 22 | syl2anc |  |-  ( k e. NN0 -> -. 2 || ( ( 2 x. k ) + 1 ) ) | 
						
							| 24 |  | 2z |  |-  2 e. ZZ | 
						
							| 25 | 24 | a1i |  |-  ( k e. NN0 -> 2 e. ZZ ) | 
						
							| 26 | 25 20 | zmulcld |  |-  ( k e. NN0 -> ( 2 x. k ) e. ZZ ) | 
						
							| 27 | 26 | peano2zd |  |-  ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. ZZ ) | 
						
							| 28 |  | mod2eq1n2dvds |  |-  ( ( ( 2 x. k ) + 1 ) e. ZZ -> ( ( ( ( 2 x. k ) + 1 ) mod 2 ) = 1 <-> -. 2 || ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( k e. NN0 -> ( ( ( ( 2 x. k ) + 1 ) mod 2 ) = 1 <-> -. 2 || ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 30 | 23 29 | mpbird |  |-  ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) mod 2 ) = 1 ) | 
						
							| 31 | 19 30 | sylan9eqr |  |-  ( ( k e. NN0 /\ N = ( ( 2 x. k ) + 1 ) ) -> ( N mod 2 ) = 1 ) | 
						
							| 32 | 8 18 31 | syl2an2r |  |-  ( ( ( P e. NN /\ k e. NN0 ) /\ P = ( ( k x. 8 ) + 3 ) ) -> ( N mod 2 ) = 1 ) | 
						
							| 33 | 32 | rexlimdva2 |  |-  ( P e. NN -> ( E. k e. NN0 P = ( ( k x. 8 ) + 3 ) -> ( N mod 2 ) = 1 ) ) | 
						
							| 34 | 7 33 | syld |  |-  ( P e. NN -> ( ( P mod 8 ) = 3 -> ( N mod 2 ) = 1 ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( P e. NN /\ ( P mod 8 ) = 3 ) -> ( N mod 2 ) = 1 ) |