Step |
Hyp |
Ref |
Expression |
1 |
|
2reuimp.c |
|- ( b = c -> ( ph <-> th ) ) |
2 |
|
2reuimp.d |
|- ( a = d -> ( ph <-> ch ) ) |
3 |
|
2reuimp.a |
|- ( a = d -> ( th <-> ta ) ) |
4 |
|
2reuimp.e |
|- ( b = e -> ( ph <-> et ) ) |
5 |
|
2reuimp.f |
|- ( c = f -> ( th <-> ps ) ) |
6 |
|
r19.28zv |
|- ( V =/= (/) -> ( A. c e. V ( ch /\ ( ta -> b = c ) ) <-> ( ch /\ A. c e. V ( ta -> b = c ) ) ) ) |
7 |
6
|
bicomd |
|- ( V =/= (/) -> ( ( ch /\ A. c e. V ( ta -> b = c ) ) <-> A. c e. V ( ch /\ ( ta -> b = c ) ) ) ) |
8 |
7
|
imbi1d |
|- ( V =/= (/) -> ( ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) <-> ( A. c e. V ( ch /\ ( ta -> b = c ) ) -> a = d ) ) ) |
9 |
|
r19.36zv |
|- ( V =/= (/) -> ( E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) <-> ( A. c e. V ( ch /\ ( ta -> b = c ) ) -> a = d ) ) ) |
10 |
|
r19.42v |
|- ( E. c e. V ( ( et /\ ( ps -> e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) <-> ( ( et /\ ( ps -> e = f ) ) /\ E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) ) |
11 |
|
pm5.31r |
|- ( ( et /\ ( ps -> e = f ) ) -> ( ps -> ( et /\ e = f ) ) ) |
12 |
|
pm5.31r |
|- ( ( ( ps -> ( et /\ e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> ( ( ch /\ ( ta -> b = c ) ) -> ( ( ps -> ( et /\ e = f ) ) /\ a = d ) ) ) |
13 |
|
pm5.31r |
|- ( ( a = d /\ ( ps -> ( et /\ e = f ) ) ) -> ( ps -> ( a = d /\ ( et /\ e = f ) ) ) ) |
14 |
|
an12 |
|- ( ( a = d /\ ( et /\ e = f ) ) <-> ( et /\ ( a = d /\ e = f ) ) ) |
15 |
13 14
|
syl6ib |
|- ( ( a = d /\ ( ps -> ( et /\ e = f ) ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) |
16 |
15
|
ancoms |
|- ( ( ( ps -> ( et /\ e = f ) ) /\ a = d ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) |
17 |
12 16
|
syl6 |
|- ( ( ( ps -> ( et /\ e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) |
18 |
11 17
|
sylan |
|- ( ( ( et /\ ( ps -> e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) |
19 |
18
|
reximi |
|- ( E. c e. V ( ( et /\ ( ps -> e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) |
20 |
10 19
|
sylbir |
|- ( ( ( et /\ ( ps -> e = f ) ) /\ E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) |
21 |
20
|
expcom |
|- ( E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) -> ( ( et /\ ( ps -> e = f ) ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) |
22 |
21
|
expd |
|- ( E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) -> ( et -> ( ( ps -> e = f ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) ) |
23 |
9 22
|
syl6bir |
|- ( V =/= (/) -> ( ( A. c e. V ( ch /\ ( ta -> b = c ) ) -> a = d ) -> ( et -> ( ( ps -> e = f ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) ) ) |
24 |
8 23
|
sylbid |
|- ( V =/= (/) -> ( ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) -> ( et -> ( ( ps -> e = f ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) ) ) |
25 |
24
|
com23 |
|- ( V =/= (/) -> ( et -> ( ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) -> ( ( ps -> e = f ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) ) ) |
26 |
25
|
imp4c |
|- ( V =/= (/) -> ( ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) |
27 |
26
|
ralimdv |
|- ( V =/= (/) -> ( A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) |
28 |
27
|
reximdv |
|- ( V =/= (/) -> ( E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) |
29 |
28
|
ralimdv |
|- ( V =/= (/) -> ( A. b e. V E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> A. b e. V E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) |
30 |
29
|
ralimdv |
|- ( V =/= (/) -> ( A. d e. V A. b e. V E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> A. d e. V A. b e. V E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) |
31 |
30
|
reximdv |
|- ( V =/= (/) -> ( E. a e. V A. d e. V A. b e. V E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> E. a e. V A. d e. V A. b e. V E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) |
32 |
1 2 3 4 5
|
2reuimp0 |
|- ( E! a e. V E! b e. V ph -> E. a e. V A. d e. V A. b e. V E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) ) |
33 |
31 32
|
impel |
|- ( ( V =/= (/) /\ E! a e. V E! b e. V ph ) -> E. a e. V A. d e. V A. b e. V E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) |