| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2reuimp.c |  |-  ( b = c -> ( ph <-> th ) ) | 
						
							| 2 |  | 2reuimp.d |  |-  ( a = d -> ( ph <-> ch ) ) | 
						
							| 3 |  | 2reuimp.a |  |-  ( a = d -> ( th <-> ta ) ) | 
						
							| 4 |  | 2reuimp.e |  |-  ( b = e -> ( ph <-> et ) ) | 
						
							| 5 |  | 2reuimp.f |  |-  ( c = f -> ( th <-> ps ) ) | 
						
							| 6 |  | r19.28zv |  |-  ( V =/= (/) -> ( A. c e. V ( ch /\ ( ta -> b = c ) ) <-> ( ch /\ A. c e. V ( ta -> b = c ) ) ) ) | 
						
							| 7 | 6 | bicomd |  |-  ( V =/= (/) -> ( ( ch /\ A. c e. V ( ta -> b = c ) ) <-> A. c e. V ( ch /\ ( ta -> b = c ) ) ) ) | 
						
							| 8 | 7 | imbi1d |  |-  ( V =/= (/) -> ( ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) <-> ( A. c e. V ( ch /\ ( ta -> b = c ) ) -> a = d ) ) ) | 
						
							| 9 |  | r19.36zv |  |-  ( V =/= (/) -> ( E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) <-> ( A. c e. V ( ch /\ ( ta -> b = c ) ) -> a = d ) ) ) | 
						
							| 10 |  | r19.42v |  |-  ( E. c e. V ( ( et /\ ( ps -> e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) <-> ( ( et /\ ( ps -> e = f ) ) /\ E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) ) | 
						
							| 11 |  | pm5.31r |  |-  ( ( et /\ ( ps -> e = f ) ) -> ( ps -> ( et /\ e = f ) ) ) | 
						
							| 12 |  | pm5.31r |  |-  ( ( ( ps -> ( et /\ e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> ( ( ch /\ ( ta -> b = c ) ) -> ( ( ps -> ( et /\ e = f ) ) /\ a = d ) ) ) | 
						
							| 13 |  | pm5.31r |  |-  ( ( a = d /\ ( ps -> ( et /\ e = f ) ) ) -> ( ps -> ( a = d /\ ( et /\ e = f ) ) ) ) | 
						
							| 14 |  | an12 |  |-  ( ( a = d /\ ( et /\ e = f ) ) <-> ( et /\ ( a = d /\ e = f ) ) ) | 
						
							| 15 | 13 14 | imbitrdi |  |-  ( ( a = d /\ ( ps -> ( et /\ e = f ) ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) | 
						
							| 16 | 15 | ancoms |  |-  ( ( ( ps -> ( et /\ e = f ) ) /\ a = d ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) | 
						
							| 17 | 12 16 | syl6 |  |-  ( ( ( ps -> ( et /\ e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) | 
						
							| 18 | 11 17 | sylan |  |-  ( ( ( et /\ ( ps -> e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) | 
						
							| 19 | 18 | reximi |  |-  ( E. c e. V ( ( et /\ ( ps -> e = f ) ) /\ ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) | 
						
							| 20 | 10 19 | sylbir |  |-  ( ( ( et /\ ( ps -> e = f ) ) /\ E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) | 
						
							| 21 | 20 | expcom |  |-  ( E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) -> ( ( et /\ ( ps -> e = f ) ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) | 
						
							| 22 | 21 | expd |  |-  ( E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> a = d ) -> ( et -> ( ( ps -> e = f ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) ) | 
						
							| 23 | 9 22 | biimtrrdi |  |-  ( V =/= (/) -> ( ( A. c e. V ( ch /\ ( ta -> b = c ) ) -> a = d ) -> ( et -> ( ( ps -> e = f ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) ) ) | 
						
							| 24 | 8 23 | sylbid |  |-  ( V =/= (/) -> ( ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) -> ( et -> ( ( ps -> e = f ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) ) ) | 
						
							| 25 | 24 | com23 |  |-  ( V =/= (/) -> ( et -> ( ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) -> ( ( ps -> e = f ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) ) ) | 
						
							| 26 | 25 | imp4c |  |-  ( V =/= (/) -> ( ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) | 
						
							| 27 | 26 | ralimdv |  |-  ( V =/= (/) -> ( A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) | 
						
							| 28 | 27 | reximdv |  |-  ( V =/= (/) -> ( E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) | 
						
							| 29 | 28 | ralimdv |  |-  ( V =/= (/) -> ( A. b e. V E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> A. b e. V E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) | 
						
							| 30 | 29 | ralimdv |  |-  ( V =/= (/) -> ( A. d e. V A. b e. V E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> A. d e. V A. b e. V E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) | 
						
							| 31 | 30 | reximdv |  |-  ( V =/= (/) -> ( E. a e. V A. d e. V A. b e. V E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) -> E. a e. V A. d e. V A. b e. V E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) ) | 
						
							| 32 | 1 2 3 4 5 | 2reuimp0 |  |-  ( E! a e. V E! b e. V ph -> E. a e. V A. d e. V A. b e. V E. e e. V A. f e. V ( ( et /\ ( ( ch /\ A. c e. V ( ta -> b = c ) ) -> a = d ) ) /\ ( ps -> e = f ) ) ) | 
						
							| 33 | 31 32 | impel |  |-  ( ( V =/= (/) /\ E! a e. V E! b e. V ph ) -> E. a e. V A. d e. V A. b e. V E. e e. V A. f e. V E. c e. V ( ( ch /\ ( ta -> b = c ) ) -> ( ps -> ( et /\ ( a = d /\ e = f ) ) ) ) ) |