| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2reuimp.c | ⊢ ( 𝑏  =  𝑐  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 2 |  | 2reuimp.d | ⊢ ( 𝑎  =  𝑑  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | 2reuimp.a | ⊢ ( 𝑎  =  𝑑  →  ( 𝜃  ↔  𝜏 ) ) | 
						
							| 4 |  | 2reuimp.e | ⊢ ( 𝑏  =  𝑒  →  ( 𝜑  ↔  𝜂 ) ) | 
						
							| 5 |  | 2reuimp.f | ⊢ ( 𝑐  =  𝑓  →  ( 𝜃  ↔  𝜓 ) ) | 
						
							| 6 |  | r19.28zv | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑐  ∈  𝑉 ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  ↔  ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) ) ) ) | 
						
							| 7 | 6 | bicomd | ⊢ ( 𝑉  ≠  ∅  →  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  ↔  ∀ 𝑐  ∈  𝑉 ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) ) ) ) | 
						
							| 8 | 7 | imbi1d | ⊢ ( 𝑉  ≠  ∅  →  ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  ↔  ( ∀ 𝑐  ∈  𝑉 ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) ) ) | 
						
							| 9 |  | r19.36zv | ⊢ ( 𝑉  ≠  ∅  →  ( ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  ↔  ( ∀ 𝑐  ∈  𝑉 ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) ) ) | 
						
							| 10 |  | r19.42v | ⊢ ( ∃ 𝑐  ∈  𝑉 ( ( 𝜂  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  ∧  ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ↔  ( ( 𝜂  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  ∧  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) ) ) | 
						
							| 11 |  | pm5.31r | ⊢ ( ( 𝜂  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  →  ( 𝜓  →  ( 𝜂  ∧  𝑒  =  𝑓 ) ) ) | 
						
							| 12 |  | pm5.31r | ⊢ ( ( ( 𝜓  →  ( 𝜂  ∧  𝑒  =  𝑓 ) )  ∧  ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( ( 𝜓  →  ( 𝜂  ∧  𝑒  =  𝑓 ) )  ∧  𝑎  =  𝑑 ) ) ) | 
						
							| 13 |  | pm5.31r | ⊢ ( ( 𝑎  =  𝑑  ∧  ( 𝜓  →  ( 𝜂  ∧  𝑒  =  𝑓 ) ) )  →  ( 𝜓  →  ( 𝑎  =  𝑑  ∧  ( 𝜂  ∧  𝑒  =  𝑓 ) ) ) ) | 
						
							| 14 |  | an12 | ⊢ ( ( 𝑎  =  𝑑  ∧  ( 𝜂  ∧  𝑒  =  𝑓 ) )  ↔  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) | 
						
							| 15 | 13 14 | imbitrdi | ⊢ ( ( 𝑎  =  𝑑  ∧  ( 𝜓  →  ( 𝜂  ∧  𝑒  =  𝑓 ) ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) | 
						
							| 16 | 15 | ancoms | ⊢ ( ( ( 𝜓  →  ( 𝜂  ∧  𝑒  =  𝑓 ) )  ∧  𝑎  =  𝑑 )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) | 
						
							| 17 | 12 16 | syl6 | ⊢ ( ( ( 𝜓  →  ( 𝜂  ∧  𝑒  =  𝑓 ) )  ∧  ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) | 
						
							| 18 | 11 17 | sylan | ⊢ ( ( ( 𝜂  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  ∧  ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) | 
						
							| 19 | 18 | reximi | ⊢ ( ∃ 𝑐  ∈  𝑉 ( ( 𝜂  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  ∧  ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) | 
						
							| 20 | 10 19 | sylbir | ⊢ ( ( ( 𝜂  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  ∧  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  →  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) | 
						
							| 21 | 20 | expcom | ⊢ ( ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ( ( 𝜂  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  →  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) | 
						
							| 22 | 21 | expd | ⊢ ( ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ( 𝜂  →  ( ( 𝜓  →  𝑒  =  𝑓 )  →  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) ) | 
						
							| 23 | 9 22 | biimtrrdi | ⊢ ( 𝑉  ≠  ∅  →  ( ( ∀ 𝑐  ∈  𝑉 ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ( 𝜂  →  ( ( 𝜓  →  𝑒  =  𝑓 )  →  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) ) ) | 
						
							| 24 | 8 23 | sylbid | ⊢ ( 𝑉  ≠  ∅  →  ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ( 𝜂  →  ( ( 𝜓  →  𝑒  =  𝑓 )  →  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) ) ) | 
						
							| 25 | 24 | com23 | ⊢ ( 𝑉  ≠  ∅  →  ( 𝜂  →  ( ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 )  →  ( ( 𝜓  →  𝑒  =  𝑓 )  →  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) ) ) | 
						
							| 26 | 25 | imp4c | ⊢ ( 𝑉  ≠  ∅  →  ( ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  →  ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) | 
						
							| 27 | 26 | ralimdv | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  →  ∀ 𝑓  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) | 
						
							| 28 | 27 | reximdv | ⊢ ( 𝑉  ≠  ∅  →  ( ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  →  ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) | 
						
							| 29 | 28 | ralimdv | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  →  ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) | 
						
							| 30 | 29 | ralimdv | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  →  ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) | 
						
							| 31 | 30 | reximdv | ⊢ ( 𝑉  ≠  ∅  →  ( ∃ 𝑎  ∈  𝑉 ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) )  →  ∃ 𝑎  ∈  𝑉 ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) ) | 
						
							| 32 | 1 2 3 4 5 | 2reuimp0 | ⊢ ( ∃! 𝑎  ∈  𝑉 ∃! 𝑏  ∈  𝑉 𝜑  →  ∃ 𝑎  ∈  𝑉 ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ( ( 𝜂  ∧  ( ( 𝜒  ∧  ∀ 𝑐  ∈  𝑉 ( 𝜏  →  𝑏  =  𝑐 ) )  →  𝑎  =  𝑑 ) )  ∧  ( 𝜓  →  𝑒  =  𝑓 ) ) ) | 
						
							| 33 | 31 32 | impel | ⊢ ( ( 𝑉  ≠  ∅  ∧  ∃! 𝑎  ∈  𝑉 ∃! 𝑏  ∈  𝑉 𝜑 )  →  ∃ 𝑎  ∈  𝑉 ∀ 𝑑  ∈  𝑉 ∀ 𝑏  ∈  𝑉 ∃ 𝑒  ∈  𝑉 ∀ 𝑓  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( ( 𝜒  ∧  ( 𝜏  →  𝑏  =  𝑐 ) )  →  ( 𝜓  →  ( 𝜂  ∧  ( 𝑎  =  𝑑  ∧  𝑒  =  𝑓 ) ) ) ) ) |