Step |
Hyp |
Ref |
Expression |
1 |
|
2reuimp.c |
⊢ ( 𝑏 = 𝑐 → ( 𝜑 ↔ 𝜃 ) ) |
2 |
|
2reuimp.d |
⊢ ( 𝑎 = 𝑑 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
2reuimp.a |
⊢ ( 𝑎 = 𝑑 → ( 𝜃 ↔ 𝜏 ) ) |
4 |
|
2reuimp.e |
⊢ ( 𝑏 = 𝑒 → ( 𝜑 ↔ 𝜂 ) ) |
5 |
|
2reuimp.f |
⊢ ( 𝑐 = 𝑓 → ( 𝜃 ↔ 𝜓 ) ) |
6 |
|
r19.28zv |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑐 ∈ 𝑉 ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) ↔ ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) ) ) |
7 |
6
|
bicomd |
⊢ ( 𝑉 ≠ ∅ → ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) ↔ ∀ 𝑐 ∈ 𝑉 ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) ) ) |
8 |
7
|
imbi1d |
⊢ ( 𝑉 ≠ ∅ → ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ↔ ( ∀ 𝑐 ∈ 𝑉 ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ) |
9 |
|
r19.36zv |
⊢ ( 𝑉 ≠ ∅ → ( ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ↔ ( ∀ 𝑐 ∈ 𝑉 ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ) |
10 |
|
r19.42v |
⊢ ( ∃ 𝑐 ∈ 𝑉 ( ( 𝜂 ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ∧ ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ↔ ( ( 𝜂 ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ∧ ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ) |
11 |
|
pm5.31r |
⊢ ( ( 𝜂 ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) → ( 𝜓 → ( 𝜂 ∧ 𝑒 = 𝑓 ) ) ) |
12 |
|
pm5.31r |
⊢ ( ( ( 𝜓 → ( 𝜂 ∧ 𝑒 = 𝑓 ) ) ∧ ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( ( 𝜓 → ( 𝜂 ∧ 𝑒 = 𝑓 ) ) ∧ 𝑎 = 𝑑 ) ) ) |
13 |
|
pm5.31r |
⊢ ( ( 𝑎 = 𝑑 ∧ ( 𝜓 → ( 𝜂 ∧ 𝑒 = 𝑓 ) ) ) → ( 𝜓 → ( 𝑎 = 𝑑 ∧ ( 𝜂 ∧ 𝑒 = 𝑓 ) ) ) ) |
14 |
|
an12 |
⊢ ( ( 𝑎 = 𝑑 ∧ ( 𝜂 ∧ 𝑒 = 𝑓 ) ) ↔ ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) |
15 |
13 14
|
syl6ib |
⊢ ( ( 𝑎 = 𝑑 ∧ ( 𝜓 → ( 𝜂 ∧ 𝑒 = 𝑓 ) ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) |
16 |
15
|
ancoms |
⊢ ( ( ( 𝜓 → ( 𝜂 ∧ 𝑒 = 𝑓 ) ) ∧ 𝑎 = 𝑑 ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) |
17 |
12 16
|
syl6 |
⊢ ( ( ( 𝜓 → ( 𝜂 ∧ 𝑒 = 𝑓 ) ) ∧ ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) |
18 |
11 17
|
sylan |
⊢ ( ( ( 𝜂 ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ∧ ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) |
19 |
18
|
reximi |
⊢ ( ∃ 𝑐 ∈ 𝑉 ( ( 𝜂 ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ∧ ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) |
20 |
10 19
|
sylbir |
⊢ ( ( ( 𝜂 ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ∧ ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) → ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) |
21 |
20
|
expcom |
⊢ ( ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ( ( 𝜂 ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) → ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) |
22 |
21
|
expd |
⊢ ( ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ( 𝜂 → ( ( 𝜓 → 𝑒 = 𝑓 ) → ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) ) |
23 |
9 22
|
syl6bir |
⊢ ( 𝑉 ≠ ∅ → ( ( ∀ 𝑐 ∈ 𝑉 ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ( 𝜂 → ( ( 𝜓 → 𝑒 = 𝑓 ) → ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) ) ) |
24 |
8 23
|
sylbid |
⊢ ( 𝑉 ≠ ∅ → ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ( 𝜂 → ( ( 𝜓 → 𝑒 = 𝑓 ) → ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) ) ) |
25 |
24
|
com23 |
⊢ ( 𝑉 ≠ ∅ → ( 𝜂 → ( ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) → ( ( 𝜓 → 𝑒 = 𝑓 ) → ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) ) ) |
26 |
25
|
imp4c |
⊢ ( 𝑉 ≠ ∅ → ( ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) → ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) |
27 |
26
|
ralimdv |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) → ∀ 𝑓 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) |
28 |
27
|
reximdv |
⊢ ( 𝑉 ≠ ∅ → ( ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) → ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) |
29 |
28
|
ralimdv |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) → ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) |
30 |
29
|
ralimdv |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) → ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) |
31 |
30
|
reximdv |
⊢ ( 𝑉 ≠ ∅ → ( ∃ 𝑎 ∈ 𝑉 ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) → ∃ 𝑎 ∈ 𝑉 ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) ) |
32 |
1 2 3 4 5
|
2reuimp0 |
⊢ ( ∃! 𝑎 ∈ 𝑉 ∃! 𝑏 ∈ 𝑉 𝜑 → ∃ 𝑎 ∈ 𝑉 ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ( ( 𝜂 ∧ ( ( 𝜒 ∧ ∀ 𝑐 ∈ 𝑉 ( 𝜏 → 𝑏 = 𝑐 ) ) → 𝑎 = 𝑑 ) ) ∧ ( 𝜓 → 𝑒 = 𝑓 ) ) ) |
33 |
31 32
|
impel |
⊢ ( ( 𝑉 ≠ ∅ ∧ ∃! 𝑎 ∈ 𝑉 ∃! 𝑏 ∈ 𝑉 𝜑 ) → ∃ 𝑎 ∈ 𝑉 ∀ 𝑑 ∈ 𝑉 ∀ 𝑏 ∈ 𝑉 ∃ 𝑒 ∈ 𝑉 ∀ 𝑓 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 ( ( 𝜒 ∧ ( 𝜏 → 𝑏 = 𝑐 ) ) → ( 𝜓 → ( 𝜂 ∧ ( 𝑎 = 𝑑 ∧ 𝑒 = 𝑓 ) ) ) ) ) |